

MDA/MDH Lab Building Infrastructure Improvements

1

Building Mission

- Ensure a safe, secure food supply free of pesticides, food-borne pathogens, and environmental contaminants.
- Detect and control infectious diseases like Ebola, Zika, and measles.
- Protect the environment and drinking water from hazardous chemicals, radioactive substances, pharmaceutical compounds, and misuse of agricultural chemicals.
- Detect rare but treatable disorders in newborns, so they can receive treatment to prevent illness, physical disability, or death.

Building Data

Constructed: 2005

Cost: \$54M

Size: 3 levels, 176,000 square feet

Designed by: HGA Architects

Constructed by: Shaw-Lundquist Construction

Operated and Maintained by: Department of Administration, Facilities Management Division

Occupied by: Minnesota Departments of Agriculture and Health

3

3

Building Data

The MDA/MDH Mission Requires the Lab to Have A Very Sophisticated Air Handling System:

- 9 air handlers and 12 exhaust fans that can move air at over 300,000 cubic feet per minute (CFM)
- 100% outside air/no recirculation
- Hepa filter system
- Heating and cooling reclamation system to reduce energy cost (heat energy wheels)

History

Shortly after construction of the building was complete we began to encounter operational issues with its mechanical systems.

- Snow entering air intakes due to lack of screening,
- Air pressure sensors failing routinely
- Inability to maintain air volume and pressure as per the design intent
- High risk of interruptions to critical lab operations during power outages due to insufficient electrical redundancy

5

5

History

- Heat Energy Wheels Began Deteriorating and Failing Routinely
 - Frosting up in cold weather made them unable to adequately temper the incoming air
 - Cold air to entered duct work and froze heating coils causing leaks throughout the building
 - The January 2014 failure caused significant operational interruption and damage to equipment and the facility

6

Environmental Lab 2nd Floor

Infectious Disease Cubes 3rd Floor

Admin Area Cubes 1st Floor

7

History

- Other discoveries during the heat energy wheel failure investigation:
 - Hot water circulating pumps piping restricted flow during cold conditions
 - Piped in parallel rather than series with the coil
 - Pressure settings on hot water circulating pumps were set too low at installation
 - Set at 12 PSI rather than 20 PSI as recommended for flow needed in this climate
 - Monitoring points on air handlers were incorrect
 - Data labeled as being reported from one air handler was actually from another

ŏ

History

The lack of a formal commissioning at construction completion and numerous systems failures over time caused considerable concern about the operability of the lab.

- Ag, Health and Admin jointly agreed to initiate a point-to-point retro-commissioning to determine if the building operates to adequately support the AG/Health mission
- Retro-commissioning focused on:
 - Mechanical systems (heating, cooling, ductwork, exhaust, and controls)
 - Utility systems (piping, vacuum, acid neutralizer, and reverse osmosis/deionized water systems)
 - · Electrical systems (power and distribution)
- · Carried out it two stages:
 - · Discovery to learn the design intent
 - Verification to learn the on-site operational needs

9

9

Findings

The Retro-Commissioning team of engineers and operators identified 700 Issues that should be tended to in order to improve safety and building performance. The major findings include:

- Deteriorated ductwork
- Insufficient general (not hood) exhaust capability in some areas
- Air pressure control issues
- · Air pressure monitoring issues
- Lab space building components need repair and replacement (broken ceiling tiles, missing insulation, abandoned utilities etc.)
- · Inadequate lighting

Corroded Ductwork 2nd Floor

2/17/2020

11

Current Status

11

- Design is underway and currently 60% complete
- Construction manager at risk (CM) has been selected and will be on board soon
 - The CM will provide critical construction logistics, schedule and cost information to the designers
- We are positioning ourselves to be ready to start construction by September 2018
 - Completion scheduled for February, 2020
- Current construction estimate is \$17M

Questions

13