Metropolitan Council Wastewater Utility Overview

Minneapolis Milling District: Early 1900s

Lock & Dam No. 1: April 5, 1917

Lock & Dam No.I. April 5, 1917. Upper gauge 7 45.95. Lower gauge 723.95.

Sewage Mats on the Mississippi: June 1933

Mississippi River Fish Survey: 1926

Metropolitan Wastewater Treatment Plant: 1938

Becoming a Regional Utility: 1969; 66th legislature

MCES Service Area and Facilities

Metropolitan Plant

Blue Lake Plant

Seneca Plant

Eagles Point Plant

Hastings Plant

East Bethel Plant

St. Croix Plant

Wastewater Generation

A \$6-\$7B System...

8 wastewater treatment plants

610 miles of sewer pipe

60 pump stations

With ~130M per year in capital investments

Why is it important to keep our sewer system in good repair?

Protect

public health

Manage assets

effectively

Protect other infrastructure

Wastewater Output

Averages 250 million gallons day

 Could fill the Empire State Building in 1 day

Wastewater Treatment

Washed/compacted screenings (to landfill)

220 dry tons per day (660 wet tons)

Solids Management Building

SF.

THE

Sludge Incineration

Operations

Industrial Monitoring

Processing Industrial Samples

Compliance Performance

National NACWA Platinum Level Compliance

Metro Plant Performance: 1942-2012

Mississippi River Bacteria Counts: 1976-2012

Mississippi River Dissolved Oxygen Concentrations: 1935-2012

Mean August Dissolved Oxygen Concentration at Grey Cloud Island (UM 826.7)

Walleye Return to the Mississippi

MCES Infrastructure Condition

40 mi	75 mi	183 mi	80 mi
			6 n

INFLOW & INFILTRATION SOURCES

I/I Program timeline

- July 1987 superstorm
 - 16" of rainfall over one week in region
- 1990 MCES system evaluation
 - 20% of annual flow from I/I
- 2002 MCES interceptor master plan
 - Future flow will exceed capacity; not sustainable
 - More cost effective to address sources than build capacity
- 2004 I/I Task Force of communities
 - Begin MCES I/I Program
 - Incentive and resources for communities
 - Revised 2010, 2016

Energy Reduction, Cost Savings

- From 2008-2015, MCES has reduced energy consumption 23%, savings of \$4M annually
- The goal is to reduce energy consumption by 10% by 2020, saving an additional \$1M annually.

Through other grants, rebates, etc., MCES has saved \$7M on energy costs.

Met Council's Wastewater Treatment is 100% Funded by User Fees

- Wastewater utility fees are not a tax; it is a fee for users of the service
- No state funds are used to operate the system
- All MCES revenue is used strictly for MCES: it does not subsidize any other Met Council divisions

Monthly Wastewater Charge 80%

Comparative Information

25 peer city average retail sewer rate per household = \$404

2013 Rates (per 2014 NACWA survey)

Water Supply

Water Supply Planning – Minn. Stat. 473.1565

2005 Legislation

- "Carry out planning activities addressing the water supply needs of the metropolitan area"
- Twin Cities Metropolitan Area Master Water Supply Plan- 2010

Metro Area Water Supply Advisory committee

- Municipalities/utilities
- Counties
- State agencies

Purpose

- Assist and Guide Council water supply planning
- Approve Master Water Supply Plan (2015)
- Appoint Technical Advisory Committee (2015)

Planning Objectives for Regional Water Supply

- Adequate water supplies are essential for our region's growth, livability and prosperity.
- Met Council Role in Regional Water Supply Planning
 - A regional water supply plan
 - Support Local government units making informed and effective decisions
 - Assistance to communities in developing and implementing local plans
 - Identify approaches for emerging issues, and
 - Strong collaborative relationship with stakeholders.

The Metropolitan Council is not a water supplier. Our intent is not to take over local water supply systems. The regional planning process has been designed and applied to ensure local water suppliers have control of and responsibility for their water supply systems.

Now we use more groundwater compared to river water

MEI

C

C O

Summer Water Use Compared to Winter Water Use

Aquifers & Surface Waters Do Interact

PDCJ: Prairie Du Chien-Jordan Aquifer **MTSH**: Mount Simon Hinckley Aquifer

Change in Prairie Du Chien-Jordan Aquifer Levels from 2040 Pumping

Metropolitan Council MAWSAC and TAC

MAWSAC County Representatives Metro Jamie Schurbon: Anoka County Georg Fischer: Dakota County Greater Metro Area Michael Robinson: Chisago County Susan Morris: Isanti County Lisa Vollbrecht: Sherburne County Mark Daleiden: Wright County

Community Representatives MAWSAC LGUs Patty Acomb: Minnetonka Todd Gerhardt: Chanhassen Phil Klein: Hugo Dean Lotter: New Brighton Barry Stock: Savage MAWSAC Water Suppliers Glen Gerads: Minneapolis Steve Schneider: St. Paul RWS TAC Bruce Westby: Ramsey Chris Petree: Lakeville Dale Folen: Minneapolis Jennifer Levitt: Cottage Grove Klayton Eckles: Woodbury Kristin Asher: Richfield Robert Cockriel: Bloomington Lon Schemel: Shakopee Mark Maloney: Shoreview (MAWSAC liason)

MAWSAC Chair Sandy Rummel: Council District 11

State and Federal Agency Partners MAWSAC Members Jeffrey Berg: MDA Randy Ellingboe: MDH Jeanne Daniels: MDNR Catherine Neuschler: MPCA **TAC Members** Lih-in Rezania: MDH Jamie Wallerstedt: MPCA James Stark: USGS

Consulting Industry

TAC Members John Dustman: Summit Envirosolutions Ray Wuolo Barr Engineering

University of Minnesota

TAC Member Crystal Ng: Dept. of Earth Sciences

TAC Representation

Counties and Council Districts Represented by MAWSAC

Metropolitan Council Water Supply Planning Area

Existing Water Supply Sub-Regional Workgroups

"Groundwater doesn't know community boundaries. We can have a greater impact if we work together on water supply sustainability."

Russ Matthys, Public Work Director, Eagan Member of Southeast Work group

Communities in Metro Area Water Supply Work Groups

Outcomes of Water Supply Sustainability and Efficiency Programs

STATUS as of Jan. 17, 2017

- Industrial Water Conservation Program (started 2012)
 - 15 projects
 - 135 Million Gallons of water saved annually- enough water for 4,000 people for a year
 - Industries saved \$1.1 Million a year in water and energy cost
- Municipal Water efficiency Grant Program (started 2016)
 - 19 recipients
 - 85 Million Gallons of water Saved enough water for 2,500 people for a year

Now we use more groundwater compared to river water

Workplan to Achieve Sustainability by 2040

- Target: Master Water Supply Plan
 - 125 to 100 gpd per capita
- **Outcome**: Accommodate growth
 - Reducing water use by 78 MGD (28 BGY)
 - Financial Saving \$ 92 M
 - Average Cost of pumping and treating 28 BGY is \$ 92 M
- Resources:
 - Total Cost of this program is \$125 150 M

Level of Funding (annually)	Estimated Water Saved per Day (Million Gallons)	Years to Achieve Target
\$ 700,000 (current)	0.44	177
\$ 1,400,000	0.9	88
\$ 3,250,000	2.2	34

What do Stakeholders say?

- The Metropolitan Council's <u>Water Conservation Toolbox</u> includes information and an extensive list of resources for residents who want to use their water efficiently. (<u>City of St Louis Park</u>)
- Being Able to start from <u>Metro Model</u> to construct the groundwater model used for the New Brighton WHPA delineation made the work more efficient and cost lower. (<u>Grant Wyffels, Former Director of</u> <u>Public Works, New Brighton</u>)
- The public awareness that the Program- <u>efficiency Grant Program</u>creates is a benefit as we work to educate the public on the importance of conserving water, even In Minnesota.(<u>Mark Burch, Director of</u> <u>Public Works, White Bear Lake</u>)
- The Metropolitan Council plays a valuable facilitating role in the discussions and provides a regional perspective for the group. Council funding of Southeast study was important because it isn't always easy to get local city councils to commit funds to something that reaches beyond their borders" Steve Albrecht .(<u>Steve Albrecht, Director of Public</u> <u>Works, Burnsville</u>)

Sewer Availability Charge (SAC) Overview

What is SAC?

- The Sewer Availability Charge, or SAC, is a one-time fee charged to local governments. (Some local governments also add additional fees to the SAC.)
- One single family home = 1 SAC unit
- Non-residential properties require a determination (or calculation) of the maximum potential wastewater capacity needed for the site.

 The Council charges SAC to local governments, who pass it on to business or property owners.

SAC is a critical revenue source

Sources (2017 Budget)

- A material component of waste water fees
- Elimination would \bullet increase monthly fees by ~20%
- Accrued benefits over 44 years

Monthly Wastewater Charge 80%

SAC allows MCES to build for the future, & charge in the future

- MCES builds pipes in anticipation of future growth, but distributes the cost over time and generations.
- SAC future-proofs our system, allowing all communities to grow

What was built in 1982

What was paid for in 1982

What was paid for in 2012

SAC serves the community

- Acts as a savings program: capacity built up front, users only pay when additional capacity is needed
- Promotes regional growth: development can occur anywhere in the region

 Frequent meetings with stakeholders to verify the program serves its constituents

2016-2017 Task Force Members

Chair

Wendy Wulff, Metropolitan Council Member

Community Government

James Dickenson, Andover City Administrator Ron Hedberg, Apple Valley Finance Director Sue Virnig, Golden Valley Finance Director Merrill King, Minnetonka Finance Director Katrina Kessler, Minneapolis Public Works Director Kyle Klatke, Brooklyn Park Plans Examiner Loren Olson, Minneapolis Government Relations Kevin Schmieg, Eden Prairie Building Official Brian Hoffman, St Louis Park Building Official
Bob LaBrossee, Cottage Grove Building Official
David Englund, Roseville Building Official
Steve Ubl, St Paul Building Official
Patricia Nauman, Executive Director of Metro Cities

Business Groups

Dan McElroy, *MN Hospitality representative (MN Restaurant Association)* Tom Thomasser, *MN Chamber of Commerce representative (Summit Brewing)*

SAC is about providing capacity for the busiest day of the year

TCF Stadium

- Capacity (pipe size) needed for average flow VS.
- Capacity needed during a Gophers-Badger game

Result: 526 SAC

Gophers-Badgers game

Average Flow

SAC is about providing capacity for the busiest day of the year

Irish Pub

- Capacity (pipe size) needed for average flow VS.
- Capacity needed on St. Patrick's Day

Result: 41 SAC

SAC is only for increased capacity

- SAC is only charged when a new or existing business increases the capacity demand on the system
 - New construction
 - Remodel adds more seats
 - Remodel changes use to higher demand (e.g., bookstore to restaurant)
- There are programs to help small to medium businesses defer the cost of SAC

Questions?

