

Xcel Energy Integrated Resource Planning

February 2020

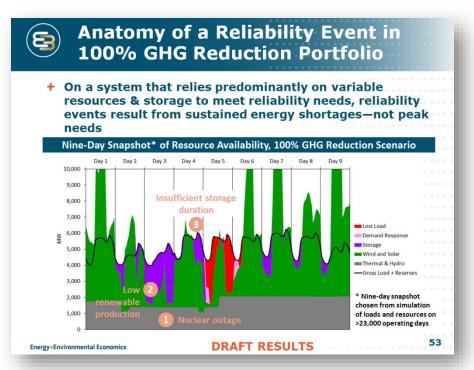
Topics

- Integrated Resource Plan (IRP) Purpose, Process, Objectives
- Stakeholder Involvement and Regulatory Process
- Generation Options & Economics
- Upper Midwest 2020-2034 Preferred Plan

What is the IRP?

Capacity Needs (Peak Hour)

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034


 Traditionally, planning to meet capacity needs in least cost manner

- Identify new resource size, type, timing
- Transition to renewables is driving major changes

How is Planning Evolving?

Energy Needs (All Hours)



- Shift to renewables requires greater focus on all hourly energy needs (not just peak hour)
- Growing levels of intermittent renewables, decreasing levels of dispatchable generation presents load & resource balancing challenges

Increased focus on front end coordination with internal & external stakeholders

IRP Objectives

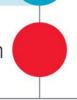
Our goal is to strike a balance between key priorities

Stakeholder Engagement

Workshops

Host Communities

Next Steps


Process to Date:
13 Intervenors
520+ Information Requests
100s of Public Comments

July 1, 2019: Plan filing with the Minnesota Public Utilities Commission

July 2019 through late 2020: Opportunity for public feedback, continued stakeholder discussions, and Commission hearings

Late 2020: Anticipated Commission decision

July 1, 2019 Sept. 2019 Nov. 2019 Jan. 2020 Mar. 2020 May 2020 July 2020 Sept. 2020 Nov. 2020 Dec. 2020

Modeling Inputs & Process

Key Input Assumptions

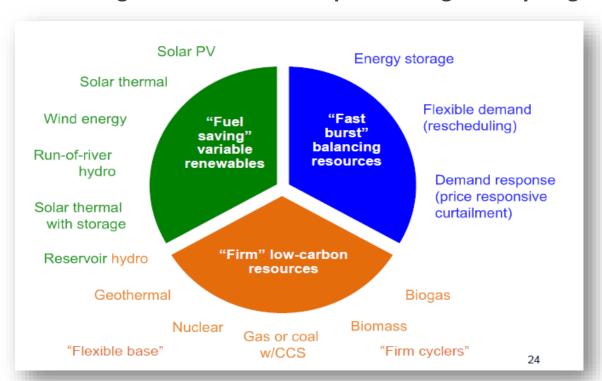
Including

- Load Forecasts & MISO Reserve Requirements
 - Distributed Generation Forecasts
 - Electrification Impact Forecasts
- Market Energy & Fuel Price Forecasts
- Existing Generation Resource Costs/Characteristics
- New Generation Resource Price Forecasts
- Transmission Interconnection/Upgrade Costs
- Cost of Capital/Discount Rates
- Inflation Rates
- Carbon & Externality Costs
- Demand Side Management Costs/Options
- Renewable Integration & Congestion Costs

Utility Modeling

Modeling Objectives:

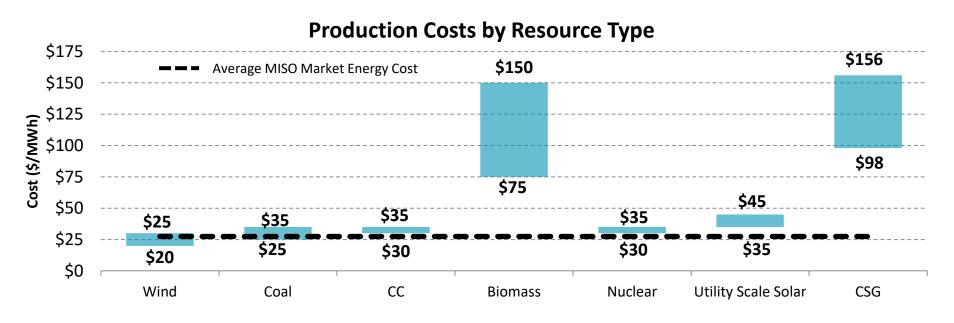
- Identify least cost generation portfolio plans
- Explore options for existing generation resources
- Identify optimal future resource additions to meet customer needs
- Evaluate risks with sensitivities/scenario analysis
- Cost, risk, emission, reliability metrics inform selection of a Preferred Plan


Preferred Resource Plan

15 Year Preferred Plan for the 2020-2034 Planning Period

Resource Options & Diversity

New generation resource options can generally be grouped into three categories


- Portfolio diversity is important
- "Firm" low-carbon resources including gas CTs and CCs are necessary components of the electric system

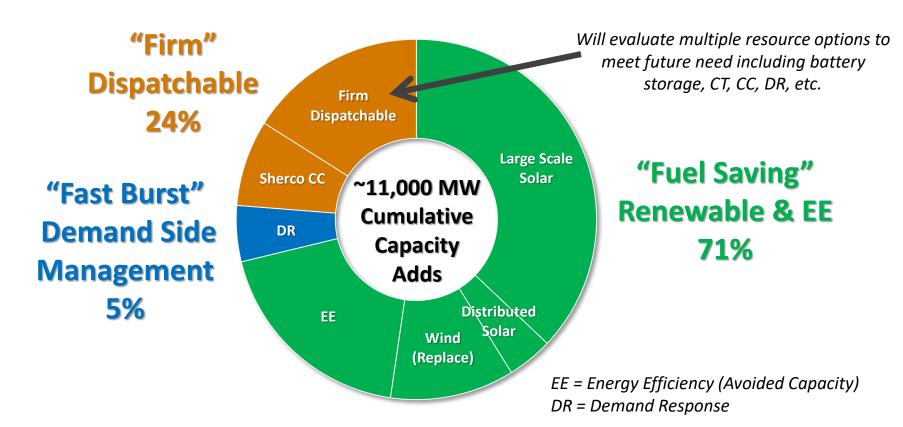
Source: Jenkins, Jesse. "Getting to Zero: Decarbonizing Electric Power." Xcel Stakeholder Workshop, 28 Aug. 2018.

Current Generation Resource Economics

Utility scale renewables have become least cost options

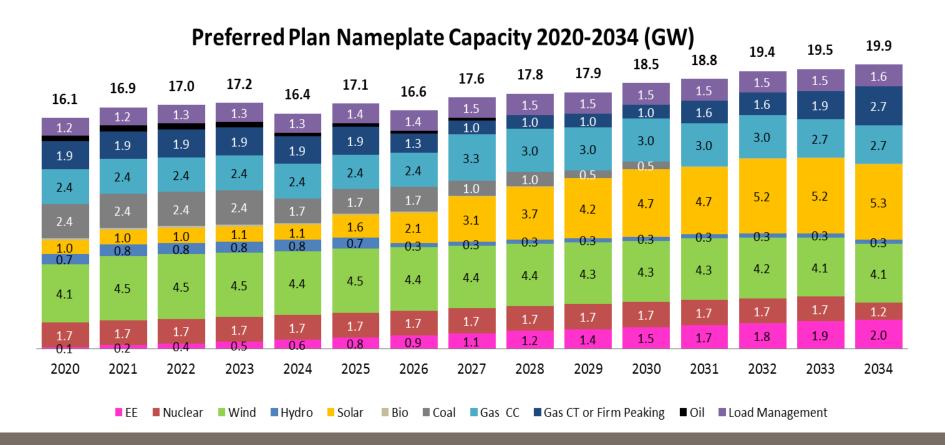
Production Cost = Fuel plus Operating & Maintenance Costs, CSG = Community Solar Gardens, CC = Natural Gas Combined Cycle Wind & Solar Costs represent current estimated range for power purchase agreements (non-owned resources)

Sources: SNL Financial Power Plant Benchmarking Report 2018 values, Internal Xcel Energy Information

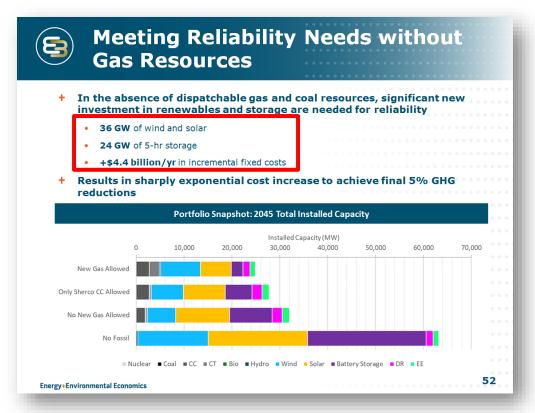


Preferred Plan Key Components

Resource	Plan Detail
Nuclear	Extend Monti from 2030 to 2040, Prairie Island Units (PI) to current end of life (2033, 2034) Question of PI extension addressed in next IRP
Coal	Early King retirement (2028), Early Sherco 3 retirement (2030)
Gas CC	Mankato CC acquisition included, Sherco CC included
Firm Peaking	~1,700 MW of cumulative firm peaking (CT, pumped hydro, battery storage, DR, etc) additions by 2034 (first in 2031)
Wind	1,202 MW of cumulative wind replacement by 2034
Solar	4,000 MW of cumulative utility scale (first in 2025), ~450 MW distributed solar additions by 2034
DSM (EE & DR)	2 out of 3 EE bundles (~2,000 MW avoided peak demand by 2034) 1 out of 3 incremental DR bundles (~550 MW of incremental DR resources by 2034)



Cumulative 2020-34 Resource Adds



Final Preferred Plan Capacity Overview

100% Renewable Challenges

- Natural gas resources are necessary to maintain reliability & keep costs down
- Eliminating all fossil resources would drive a quadrupling of our portfolio size
 - 2019: ~14 GW gen capacity
 - 2045: >60 GW gen capacity

\$4.4 billion per year Incremental Fixed Costs

Source: E3. Xcel Stakeholder Workshop, 17 Apr. 2019.

E3 Key Conclusions

Key Conclusions

- Early retirement of coal generation resources provides the lowest cost pathway to meet 2030 emissions reduction goals
 - Coal generation produces approximately 85% of Xcel's GHG emissions in the 2020 Reference case
 - Capacity and energy from existing coal plants can be replaced at relatively low cost with a portfolio of efficiency, renewables, storage, and natural gas
- A diverse portfolio of resources—including nuclear—offers the least-cost pathway to deep carbon reductions
 - Relicensing both nuclear plants will help Xcel meet its 2050 GHG goals while also ensuring a reliable system
 - Meeting all reliability needs with a combination of wind, solar, and storage will require prohibitively large investments
- Natural gas plants will be useful to ensure a reliable system, and will
 operate at low capacity factors
 - Wind, solar, storage and demand response are limited in their ability to provide effective capacity
 - Disallowing new gas investment drives up the cost of the system while generating the same amount of GHG emissions
 - Between 2,000 and 4,000 MW of new gas resources are selected by 2045 when allowed as part of a least-cost portfolio to meet greenhouse gas goals

