
1.  Introduction
For almost a century, surface warming has had its largest amplitude in the higher latitudes of the Northern 
Hemisphere (Callendar, 1938). Over the last several decades, the Arctic region has warmed between 0.14°C per 
decade (Bekryaev et al., 2010) and 0.17°C per decade (Polyakov et al., 2002), which is more than twice the rate 
of the rest of the planet. With anthropogenic climate change, it may warm an additional 4–8°C by the end of this 
century (Harvey et al., 2015; IPCC, 2013, 2021). The U.S. state of Minnesota is strongly affected by this Arctic 
warming, particularly during winter, when the influence of Arctic air is most dominant (Wang et al., 2017) and 
when reductions in snow cover lower the surface albedo (Shi et al., 2013). Minnesota's winter warming is the 
strongest among the 48 contiguous United States (NCEI, 2021). Future projections indicate ongoing warming as 
well as significant increases in spring and early summer heavy precipitation events over the north central United 
States by the end of this century (Harding & Snyder, 2014).

Despite the clear signals of increased temperature and precipitation in models of future climate, the large-scale 
outputs of general circulation models (GCM) are difficult to integrate into regional, state, and local planning 
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where climate information is required by decision makers over smaller areas, such as individual watersheds and 
counties. GCMs typically have resolutions coarser than 100 km, which is insufficient for these applications (Boé 
et al., 2007; Zorita & von Storch, 1999). Differentiating the impacts of climate change at finer spatial scales is 
particularly important and challenging in Minnesota, where many days of snow cover and many small-scale open 
water sources, such as lakes and rivers all contribute to variations on the ground that are typically not addressed 
by GCMs. In order to provide reasonable climate projections over Minnesota on the regional scale, we dynam-
ically downscaled GCM projections from an eight-model ensemble to a higher spatial resolution (∼10 km) by 
nesting a finer scale regional climate model (RCM).

An early review of dynamical downscaling efforts (Giorgi & Mearns, 1991) describes simulations as high as 
0.5° x 0.5° horizontal resolution, which has later been improved to a range of 25–50 km in the comprehensive 
Coordinated Regional Downscaling Experiment (CORDEX; Giorgi et al., 2015), especially the North American 
branch (NA-CORDEX; McGinnis & Mearns, 2021), which is preceded by the North American Regional Climate 
Change Assessment Program (NARCCAP; Mearns et al., 2009). However, these simulations have an insufficient 
horizontal resolution to resolve the small-scale open water sources in Minnesota.

Other high-resolution studies like Liu et al.  (2017) at a 4-km horizontal resolution typically do not provide a 
multimodel ensemble to address the uncertainty in future climate projections. Ensemble downscaling simula-
tions are considered crucial for providing a better estimate of future climate change and an uncertainty range 
(Xu et al., 2018). The downscaling experiment by Ashfaq et al. (2016) is probably closest to the present study. It 
uses 11 GCMs, including seven of the eight in the present study, for dynamical downscaling over the contiguous 
United States at an 18-km horizontal resolution, but only addresses one midcentury RCP8.5 scenario.

2.  Methods
We use a dynamical downscaling approach based on nesting GCM input data with the Weather Research and Fore-
casting (WRF) RCM (Skamarock et al., 2008) coupled to the Community Land Model (CLM; Dai et al., 2003) 
with a dynamic crop module. This model version, also known as WRF-CLM4crop, has previously been described 
by Harding et al. (2016) and Lu et al. (2015). Vegetation, soil, and other land surface parameters for WRF-CLM-
4crop are taken from the annual cycle of the Moderate-resolution Imaging Spectroradiometer (MODIS) satellite 
product at a 30-s horizontal resolution (Zhang et al., 2006) and kept consistent between all simulations. Atmos-
pheric boundary conditions include 6-hourly prognostic variables such as temperature, wind speed and direction, 
specific humidity, and geopotential height from the Coupled Model Intercomparison Project 5 (CMIP5) GCM 
archive (Taylor et al., 2012) at the Earth System Grid (Williams et al., 2009).

From more than 40 available GCMs, we selected eight that provide all necessary prognostic variables and show 
reliable large-scale results over the Midwestern United States (Table 1; Harding et al., 2013). We adjusted the 
model selection in Table 4 of Harding et al. (2013) to only include GCMs that produce reasonable downscaling 
results during all four seasons, since Harding et al. (2013) only studied the summer season. Therefore, we needed 
to exclude MIROC4h and the ACCESS models after a short test simulation with our WRF downscaling setup. 
CCSM4 is not listed in Table 4 of Harding et al. (2013) because 6-hourly input data were not available at that 
time. However, it is ranked highly in their Figure 5, so we included it in this study.

Our downscaling approach is based on one-way nesting between the global and regional domains and two-way 
nesting between the two regional domains, so our RCM results cannot modify the global domain. Our regional 
domains comprise an outer nest over a large portion of North America at a 50-km grid-cell horizontal resolution 
and an inner nest over Minnesota and adjacent areas at a 10-km grid-cell horizontal resolution (Figure 1). These 
two nests are connected via two-way nesting and thus influence one another. The southern end of the outer nest 
is extended to the Gulf of Mexico in order to capture the Great Plains Low Level Jet (GPLLJ), which transports 
much-needed moisture from the Gulf of Mexico into the Central United States, especially during the warmer 
seasons (Zhou et al., 2021). However, the extent in other directions is limited by available computing resources, 
and therefore other storms such as those that develop in the lee of the Rocky Mountains may be represented only 
by the GCM input data instead of the regional WRF simulations. The inner nest in Figure 1 includes all lake 
points as represented in our WRF version.
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We compute downscaled regional climate projections for the historical period of 1980–1999; from the RCP4.5 
scenario, which assumes a moderate amount of mitigation of GHG emissions (van Vuuren et al., 2011) for two 
20-year periods of the 21st century (2040–2059 and 2080–2099); and from the RCP8.5 scenario, which assumes 
only a minimum of mitigation, for the 2080–2099 period (Riahi et al., 2011). For the state of Minnesota and 
surrounding regions, we use WRF to generate hourly averages of the following surface variables: 2-m air temper-

ature, 2-m humidity, 10-m wind speed and direction, precipitation, downward 
solar radiation, net radiation, latent, sensible, and ground heat fluxes, snow 
depth, and soil temperature and moisture content at 10 layers to a depth of 
2.5 m. The seasonal cycle of these values, especially precipitation, is gener-
ally improved by physical downscaling (Mendez et al., 2020).

We perform a simple linear-scaling bias-adjustment (Teutschbein & Seib-
ert, 2012) to surface air temperature and precipitation as described in equa-
tions 1–4 in Shrestha et  al.  (2017) using monthly mean observations as 
reported by the PRISM group (Daly et al., 2017). For snow depth, we perform 
bias adjustment with the NSIDC analysis that uses a combination of observed 
snow depth observations and the PRISM data set (Broxton et al., 2019; Zeng 
et al., 2018).

For the bias adjustment, we compare observations and WRF-simulated 
values from runs forced with each GCM for each monthly average (i.e., the 
average temperature difference over every January from 1980 to 1999 is 
calculated to receive one offset value for January at each grid point). Precipi-
tation and snow depth are scaled by dividing monthly observational averages 
for 1981–2000 by monthly model values. The 2-m air temperature, precipi-
tation, and snow depth error adjustments are then applied to data from each 
WRF run for each future scenario. Bias adjustment based on linear scaling 
retains the interannual variability but forces each multiyear monthly aver-
age for each GCM-forced WRF run in the historical simulations to equal 
the PRISM observations and NSIDC analysis, respectively. Linear scaling 
assumes that this offset carries through to the climate simulations of the 
future, so the simulations will now diverge in their calculations of these vari-
ables. Variables other than air temperature, precipitation, and snow depth 
are not adjusted because of lack of available observations. The prognostic 
variables for CCSM4 and CMCC-CM were previously bias-adjusted, so their 
historical multiyear monthly means match reanalysis data as described in 
Bruyère et al. (2014). We apply the same bias adjustment to the prognostic 
variables of all future scenarios for these two models.

In addition to analyzing WRF results forced from each GCM, we analyze the 
multimodel ensemble (MME) of each variable averaged over all WRF-driven 

Model Institution Resolution [°] Reference

bcc-csm1-1 BCC (China) 1 x 1.33 (Wu et al., 2010)

CCSM4 NCAR (USA) 0.9 x 1.25 (Gent et al., 2011)

CMCC-CM CMCC (Italy) 0.75 x 0.75 (Scoccimarro et al., 2011)

CNRM-CM5 CNRM-CERFACS (France) 1.5 x 1.5 (Voldoire et al., 2012)

GFDL-ESM2M NOAA-GFDL (USA) 2 x 2.5 (Dunne et al., 2012)

IPSL-CM5A-LR IPSL (France) 1.875 x 3.75 (Dufresne & Bony, 2008)

MIROC5 MIROC (Japan) 2.8 x 2.8 (Watanabe et al., 2010)

MRI-CGCM3 MRI (Japan) 1.125 x 1.125 (Yukimoto et al., 2012)

Table 1 
List of GCMs for Boundary Conditions

Figure 1.  The outer (complete map) and inner grid (black frame) used for 
climate projections. The state of Minnesota is marked in white.



Earth and Space Science

LIESS ET AL.

10.1029/2021EA001893

4 of 16

runs from all GCMs. Individual years of the simulations are treated as individual ensemble members in our 
analyses, and we adjusted the degrees of freedom in our statistical tests to account for lag-1 autocorrelation in 
our data, according to Wilks (2011), which allows a robust statistical analysis with 160 ensemble members per 
scenario. The advantage of this approach is that the variability of individual GCM simulations is being preserved, 
compared to smaller ensemble sizes with average GCM forcings. Although an MME approach with eight down-
scaled models should be considered as more reliable than individual model results, as previously demonstrated 
by Pincus et al. (2008), we also quantify bias adjustments for individual realizations of the historical climate in 
the next section.

3.  Results and Discussion
3.1.  Statewide Area Averages

The statewide area averages are computed by averaging over all grid cells with more than 50% of their area 
inside the state. Figure 2 depicts the statewide area averages for the bias adjustment offset for 2-m temperature 
and the adjustment factor for precipitation. These adjustments are applied to the WRF simulations to generate 
the bias-adjusted results. Although the GCM input data (Figures 2a and 2c) are closer to the observations, the 
WRF simulations (Figures 2b and 2d) convey the larger climate variability on the regional scale. However, the 
larger bias in the simulated precipitation is partly due to the choice of the 10-km horizontal resolution, which 
is within the 5–10 km range where neither convective parameterization nor a fully explicit approach provide 
convincing results (Molinari & Dudek, 1992). WRF-CLM4crop uses a convective parameterization scheme that 
adds subgrid-scale precipitation to the explicit approach and thus leads to an overestimation of precipitation in 
our results, in contrast to the study by Ashfaq et al. (2016), which uses cumulus convection parameterization on 
the larger 18 km grid or the study by Liu et al. (2017), which does not add cumulus convection parameterization 
to the smaller 4 km grid.

Although the trend analysis in the present paper is independent of linear scaling, we find that the analysis of 
absolute values and threshold values, such as the number of days per year with snow depth of more than a certain 
value benefits from the bias adjustment. It should also be noted that the downscaled results (Figures 2b and 2d) 
do not reflect the performance of individual GCMs (Figures 2a and 2c), they are merely a reflection of how WRF 
interprets the given sets of input data. Thus, although we use the term MME, our results are obtained with a single 
regional model at a single horizontal resolution, which makes the statistical analysis more feasible.

Many characteristics of individual GCM input data are also reflected in the WRF simulations during our 20-year 
historical simulation. For example, GFDL-ESM2M, IPSL-CM5A-LR, MIROC5, and MRI-CGCM3 have a warm 
bias in winter, whereas bcc-csm1-1 and CCSM4 have a cold bias in winter. CNRM-CM5 shows a slight warm 
bias from July to September, and MIROC5 depicts a strong warm bias from June to the end of the year. All WRF 
simulations apart from the ones driven by CMCC-CM have a cold bias in April and May, potentially due to the 
positive precipitation bias during this wet season. All area-averaged GCM input data are too dry in winter but 
only WRF runs driven by CMCC-CM, GFDL-ESM2M, IPSL-CM5A-LR, and MRI-CGCM3 share this GCM 
dry bias in winter. Especially in summer, all WRF runs are too wet based on the overrepresentation of convective 
precipitation, as discussed above (Figures 2c and 2d).

A detailed spatial analysis of the differences between the nonbias-adjusted WRF runs and the GCM input data 
in terms of comparability to observations is given in Figures S1 and S2 in the supplemental material. Figure S1 
in Supporting Information S1 shows that historical 2-m temperatures in WRF are slightly too high in winter and 
too low in the spring rainy season compared with observation and also with GCM input. However, in summer, 
WRF simulations fit better with observations than the GCM input. Summer temperatures in the GCM input data 
are generally too high, but therefore match over the urban heat island of the Twin Cities metro area in southeast 
Minnesota, although urban climate is typically not included in GCMs. Fall temperatures are generally well repre-
sented in WRF and the GCM input data. Figure S2 in Supporting Information S1 depicts the general wet bias in 
the WRF MME that outweighs the aforementioned dry bias in some WRF simulations in winter. Although the 
relative precipitation bias is strongest in the dry summer season (Figure 2d), the absolute differences to observa-
tions are still not statistically significant over the southcentral region.

Figures S3–S6 in Supporting Information S1 compare future projections from the MMEs for GCMs and the WRF 
runs. Despite the wet bias in the WRF MME, they have similar trends for all three emission scenarios. Figure S7 

https://agupubs.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1029%2F2021EA001893%26file=2021EA001893-T-sup-0001-Supporting%2BInformation%2BSI-S01.pdf
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in Supporting Information S1 provides the bias adjustment factors for snow depth. Their values divert away from 
1.0 for smaller absolute snow depth values in spring and fall. We suggest that higher values in WRF snow depth 
are a direct result of increased precipitation.

MME 2-m temperature increases in each scenario compared to the historical period, particularly in winter 
(Figure 3). WRF simulates less future warming than the MME when driven by MRI-CGCM3 and GFDL-ESM2M 

Figure 2.  Bias adjustments area-averaged over every grid cell within the state of Minnesota for (a) 2-m temperature difference between GCM runs and PRISM, (b) as 
(a) but for 2-m temperature difference between WRF runs and PRISM, (c) as (a) but for fraction of PRISM precipitation over GCM runs, and (d) as (b) but for fraction 
of PRISM precipitation over WRF runs. Please note that the optimum offset in (a) and (b) is 0, whereas the optimum fraction in (c) and (d) is 1.
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and generally stronger warming when forced with MIROC5 and IPSL-CM5A-LR. Simulated warming driven by 
bcc-csm1-1, CCSM4, CMCC-CM, and CNRM-CM5 is relatively close to the MME. Figure S8 in Supporting 
Information S1 depicts the anomaly time series and overall standard deviation for a more detailed analysis of 
future trends, which does not only show the projected temperature increase of 2°C by the midcentury but also 
results in the individual WRF runs. These include strong warming during the month of May of up to 13°C in the 

Figure 3.  Monthly average 2-meter temperature averaged over every grid cell within the state of Minnesota for each Weather Research and Forecasting (WRF)-
downscaled GCM (colors), the multimodel mean (MME; black line), and the PRISM data set (dashed line). Also shown are all years of the 20-year WRF simulations 
for all GCMS (160 realizations; gray lines).
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MIROC5-driven runs and an especially weak warming during the month of March of generally less than 1°C in 
the MRI-CGCM3-driven runs.

Simulated precipitation variability (Figure 4) increases in spring and summer, especially in the late 21st century. 
Early summer MME rainfall increases in the mid-century and in the RCP8.5 late-century scenarios, while fall 
MME rainfall increases in both scenarios in the late century. There is a very small increase in winter MME 
precipitation of about 0.1 mm d −1 in all scenarios. When WRF is driven with GFDL-ESM2M and MRI-CGCM3, 
increases in summer are strongest with values above 2 mm d −1, whereas the MIROC5-driven simulations show 

Figure 4.  As Figure 3, but for precipitation.
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decreases of up to 2 mm d −1 from late spring through early fall in all scenarios. WRF-forced simulations of 
precipitation from CMCC-CM are notably different from those of other models, with large increases of up to 
4 mm d −1 in the fall for both late 21st-century simulations. As with temperature, precipitation from WRF driven 
with bcc-csm1-1, CCSM4, and CNRM-CM5 is closest to the MME. Anomaly time series and standard deviation 
for precipitation and the related snow depth are displayed in Figures S9 and S10 in Supporting Information S1.

3.2.  Spatial Distributions

Historical 20-year average winter (Figure 5a) and summer (Figure 6a) MME 2-meter temperatures illustrate the 
strong north-south temperature gradient in the state. Anomalies of future winter MME projections (Figures 5b–5d) 
show that temperature increases are strongest along the northern border in the mid-century runs (Figure 5b), 
throughout much of the northern half of the state in RCP4.5 by the end of the century (Figure 5c) and throughout 
most of the northern half of the state in the RCP8.5 scenario (Figure 5d).

The increased rate of warming in the north is suggested to be related to both synoptic-scale warming (Wang 
et al., 2017; their Figure 8) as well as reduced albedo from reduced snow cover, which results in increases in 
average winter temperature ranging from ∼1°C by the mid-century to 6°C by the end of century in RCP8.5 
(Figure 5d). This warming trend can be observed across Minnesota (Runkle et  al., 2017; their Figure 1) and 
our simulations suggest that the trend will continue. Lakes will be ice-free for longer periods and the resulting 
decrease in albedo will contribute to local winter warming. The average summer temperature shows a more 
homogeneous increase across the state that ranges from ∼1°C by the mid-century (Figures 6b) to 5°C by the end 
of the century in the RCP8.5 scenario (Figure 6d). These simulated future increases in average summer tempera-
ture contrast with observations of average summer temperature across the state that do not have a significant trend 
in the historical record (Runkle et al., 2017; their Figure 2a).

Some of the future simulations also do not depict significant temperature changes by the mid-century, especially 
GFDL-ESM2M and MRI-CGCM3, whereas others show a much stronger warming. Strong mid-century warming 
of about 4°C occurs with bcc-csm1-1 and CNRM-CM5 forcing in winter and with IPSL-CM5A-LR and MIROC5 
forcing in summer (Figures 3b and S8 in Supporting Information S1), which is also depicted in the detailed maps 
of temperature trends for different GCM input data (Figures S11 and S12 in Supporting Information S1). The 
stronger warming in the northern parts of the state in the MME is consistent with most model simulations, only 
CCSM4 and MRI-CGCM3 show a stronger warming in southern and central Minnesota during both seasons 
and GFDL-ESM2M only during summer. CNRM-CM5 and MIROC5 project a more pronounced negative west-
east gradient in winter temperature change than most models, only simulations forced with MRI-CGCM3 and 
in RCP4.5 also CMCC-CM result in a positive west-east gradient during both seasons. In GFDL-ESM2M, this 
appears only in winter. Input data from CCSM4, CMCC-CM, and IPSL-CM5A-LR lead to the strongest response 
over lakes. In summer, increased evaporation over lakes mitigates local warming.

According to the statewide average analysis of precipitation (Figure 4), most of the change in future precipitation 
occurs in spring and early summer; therefore, we analyze spring average MME precipitation (rain and snow water 
equivalent) here. Spring average MME precipitation across Minnesota is strongest in the southeast portion of the 
state and weakest in the northwest (Figure 7a). Simulated precipitation changes by the mid-century differ among 
WRF runs with some runs showing spring increases (e.g., driven with IPSL-CM5A-LR) and some showing 
decreases (e.g., driven with MIROC5 and GFDL-ESM2M; Figure 4b), which together result in no significant 
changes in spring average precipitation across the state (Figure 7b). By the end of the century, spring precipitation 
is projected to increase slightly in the far north of the state in the RCP4.5 scenario (Figure 7c) and by up to 1 mm 
d −1 in the northern half of the state as well as the southern portion of the domain in Iowa in RCP8.5 (Figure 7d). 
This is in contrast to statistical projections from Localized Constructed Analogs (LOCA; Pierce et al., 2014), 
where the strongest precipitation increase occurs in the northeastern and central parts of the state (Figure S13 in 
Supporting Information S1). This is similar to the historical trend (NCEI, 2021). Our results show that the great-
est future increase in rainfall is projected to occur in the northern part of the state indicate a change in regional 
circulation, and spring average rainfall across the state will become more homogeneous. Winter average MME 
precipitation is projected to increase slightly, with a statistically significant increase by end of century of up to 
0.25 mm d −1 in RCP8.5 (not shown).
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Figure 5.  Average winter (December–February) MME 2-meter temperature in °C for (a) historical simulations and (b)–(d) 
anomalies of each RCP scenario compared to the historical period. Shading in (b)–(d) indicates statistically significant 
changes over U.S. land points at the 95% confidence interval. Please note that there is a different color bar for (a) than for 
(b)–(d).
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Figure 6.  As Figure 5, but for summer (June–August).
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Figure 7.  As Figure 5, but for precipitation and precipitation anomalies in mm d −1 in spring (March–May).
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Figure 8.  As Figure 5, but for MME snow depth and snow depth anomalies (cm) in winter (December–February).
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Average winter MME snow depth generally increases with latitude across the state; however, there is a lobe of 
lower snow depths stretching northward on the far western side of the state (Figure 8a). Despite the currently 
observed and projected increases in precipitation, snow depth is projected to decrease across the state except in 
the northernmost region during the 21st century (Figures 8b–8d) because of increased surface air temperature. 
Strongest decreases in snow depth are projected to occur in central Minnesota, where average snow depth is 
expected to decrease by up to 50% by the middle of the 21st century (Figure 8b). By the end of the 21st century 
under RCP8.5, this change is expected to also cover southern Minnesota and the maximum reduction in snow 
depth reaches more than 12 cm. While snow depth over the northernmost part of the state remains virtually 
unchanged, the simulations show significant decreases in snow depth along the Minnesota North Shore and into 
much of Wisconsin exceeding 12 cm. These regions include part of the U.S. National Forest system and are at 
risk of decreasing revenues in winter recreation as well as threats to ecosystem health from pests that may survive 
warmer winters (Govindan & Hutchison, 2020; Venette & Hutchison, 2021).

The average MME number of days per year when snow depth meets or exceeds a threshold of 2.54 cm (equivalent 
to one inch) follows a similar pattern as average MME snow depth (Figure 9a). Warmer winters result in fewer 
days with snow cover on the ground. Significant decreases in days per year with snow cover above one inch are 
found over central and southeast Minnesota and western Wisconsin of up to 40 days per year by the mid-cen-
tury (Figure 9b). By the end of the century in the RCP8.5 scenario, there are up to 55 fewer days of snow cover 
in Minnesota and more than 60 fewer days in central Wisconsin (Figure 9d). Because of the large uncertainty 
of observed snow depth, we also provide non adjusted snow depth values in Figures S14–S16 in Supporting 
Information S1. They complement Figures S10 in Supporting Information S1 and Figures 8 and 9, and although 
snow depth is generally lower in observations, the days per year with snow cover are remarkably similar, which 
suggests that the number of snow events is similar, despite the higher snowfall rate in the WRF simulations.

The goal of this study is to develop a dynamically downscaled climate data set for Minnesota to be used for impact 
studies. This data set will be useful if it provides value to previously developed, well-tested data sets (i.e., higher 
resolution while broadly agreeing with other projections). While there are differences in the number of GCMs, time 
periods, and downscaling methods between our study and that of the National Climate Assessment (NCA), our 
results are consistent in magnitudes and patterns. For example, our statewide average annual temperature increases 
(Figures 3b–3d) agree broadly with Midwest average projected increases for RCP4.5 by mid-century (𝐴𝐴 Δ 2.3°C) and 
for end of century for RCP4.5 (𝐴𝐴 Δ 3.1°C) and RCP8.5 (𝐴𝐴 Δ 5.3°C) in Table 6.4 of the NCA (Vose et al., 2017).

The benefits of downscaling are highlighted for a variable like precipitation that varies strongly in space and time 
and for which variability is projected to increase in the future. Like our analysis, the NCA found more significant 
changes in projected precipitation in winter and spring than in fall and summer (Easterling et al., 2017). While 
their analysis shows a homogeneous increase in winter and spring precipitation for RCP8.5 by the end of the 
century of about 20%, we found a smaller though statistically significant increase in winter precipitation and more 
spatial variability in projected spring precipitation. Our projected RCP8.5 end of the century spring precipitation 
ranges from no statistically significant change in the southern portion of the state to a 12%–30% increase in the 
central region and a 30%–60% increase in the north. While our analysis provides a more detailed projection of 
future precipitation than the NCA, we note that there are limitations to our analysis because of the single regional 
climate model used to downscale data and the single method of bias adjustment we employed (Laux et al., 2021). 
Future studies will examine alternate methods of bias adjustment of this data set.

The data presented here are immediately useful for impact studies of agricultural, energy, economic, and other 
ecosystem service sectors of Minnesota and will be a baseline for comparison with future downscaling efforts 
of CMIP6 (Stouffer et  al., 2017). Multimodel ensemble values of temperature and precipitation are available 
at a variety of user-defined domains from climate.umn.edu (The Minnesota Department of Natural Resources 
Climate Explorer Tool), and all daily data are available for download at the University of Minnesota Digital 
Conservancy website. Other raw data are available upon request.

4.  Conclusions
The present study describes a high-resolution regional climate modeling effort over the U.S. state of Minnesota 
that is already providing input for various projects, including improved projections of weather extremes, manage-
ment of infrastructure, industry, and water resources (Noe et al., 2019) as well as the tracking of invasive species 

https://climate.umn.edu/climate-explorer-tool
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Figure 9.  As Figure 5, but for MME days per year and difference in days per year with snow depth above 2.54 cm (one inch).
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(Govindan & Hutchison, 2020; Venette & Hutchison, 2021). This state-level downscaling effort links climate 
projections to decision-making within regional communities. Snow depth simulations emphasize the need for 
detailed modeling efforts of the hydrological cycle, especially over high-latitude climates.

Data Availability Statement
The daily WRF model data are hosted at the University of Minnesota Digital Conservancy website at: https://doi.
org/10.13020/YV29-JY19. CMIP5 forcing data were obtained from the World Data Center for Climate (WDCC) 
hosted by the German Climate Computing Center (DKRZ) at https://cera-www.dkrz.de/WDCC/ui/cerasearch/q. 
Monthly temperature and precipitation observations for 1981–2000 were made available by the PRISM group 
at http://www.prism.oregonstate.edu/recent, and the snow depth analysis was provided by NSIDC at https://doi.
org/10.5067/0GGPB220EX6A.
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