

2021 Minnesota Legislative Session Coversheet HF1506 SF1389

Applied Research in State Mineral and Water Resources; \$2.0M appropriation request

Critical Research for Minnesota

Minnesota's mineral and water resources are valuable, precious and interconnected; advancements in how we both use and preserve these resources is critical to the future economy of our state.

Two Applied Research Projects

NRRI is requesting continuing Legislative support for two strategic, applied research and demonstration projects intended to deliver new opportunities for Minnesota.

PROJECT 1

Demonstration of Three Sulfate Reduction Technology Applications (\$600K)

FOCUS: Sulfate contamination of Minnesota's water bodies, whether natural or manmade is a challenge across the state. Demonstration of low-cost methods are needed to offer alternative treatments.

- small, municipal water treatment facilities (100-200ppm) cannot meet current standards cost-effectively
- alternative approaches to address legacy (1000-2000ppm) and operating (>2000ppm) industrial sites are also needed
- physical & biological technologies and combinations thereof have been developed for piloting in mobile demonstration units

BENEFITS: This research will

- demonstrate emerging technology applications to address municipal and industrial challenges
- ✓ pilot scale operations will provide relevant performance and economic data
- ✓ build upon partnerships with state agencies and municipalities

FUNDING DISTRIBUTION:

- 1. Design/build/commission mobile biological treatment unit (\$150K)
- 2. Multisite deployment; data collection and analysis (\$400K)
- 3. Partner outreach (\$50K)

Natural Resources Research Institute University of Minnesota Duluth Driven to Discover 2021 Minnesota Legislative Session Coversheet HF1506 SF1389

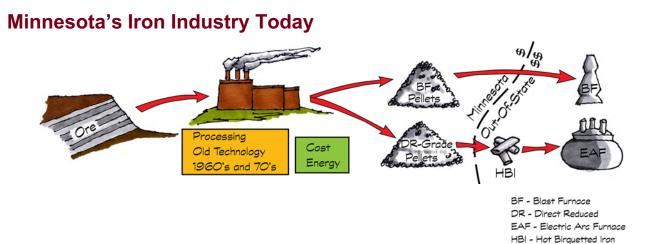
Applied Research in State Mineral and Water Resources; \$2.0M appropriation request

PROJECT 2 Minnesota's Future iron Resources, Next-Generation Technologies and New Iron Products(\$1.4M)

FOCUS: Minnesota's higher quality ores are becoming depleted, but abundant lower quality ores remain – what is the Iron of the Future?

- future use of Minnesota's iron resources will require development of new technologies and higher value iron products coupled with continual evaluation of social, environmental and economic considerations
- this work will build on past investment in UMN's former Mines Experimental Station and the work of E.W. Davis that made today's taconite industry possible
- Minnesota must *begin* to invest today to have an iron industry in the future

BENEFITS: This research will


- ✓ characterize Minnesota's remaining iron and related mineral resources
- ✓ outline technology gaps and novel process development opportunities
- incorporate life cycle thinking to address sustainable development goals associated with impact reductions in carbon and other emissions, water utilization and energy consumption

FUNDING DISTRIBUTION:

- 1. Identify and characterize Minnesota's remaining iron resources (\$600K)
 - initiate long-term, geological, geochemical and geometallurgical studies
 - collaborate with industry, agency & public stakeholders
- 2. Initiate comprehensive process development research program (\$600K)
- 3. Develop & test approaches to ensure modern, sustainable iron mining and iron products in Minnesota (\$200K)
 - target emerging high-value iron products

Minnesota's Iron of the Future

Minnesota iron resources are changing. We have to innovate and adapt by expanding our portfolio of Iron products and keeping value in the state.

Challenges facing the Minnesota iron industry today:

- 1. Resource: Declining quality and reserves of the iron ore resource
- 2. Economic: Increased energy costs for production
- **3.** Limited Portfolio: Single low-margin product which accesses only 30% of the steel industry overall
- 4. **Regulatory:** Increasingly stringent water quality and air emission standards

Goals and Impacts for Minnesota's Next Gen Iron Industry:

- Jobs: Job development for today and tomorrow
- Profits: High-value products developed in state
- Economic Development: A high-tech portfolio of iron products
- Sustainability: Potential for a carbon-neutral iron industry in Minnesota

Minnesota's **Iron** of the **Future**

NRRI Solution

Minnesota's Iron Industry of Tomorrow Processina New Technology larde 2020 Finer Complex Expectation \$4 Iron Energy Water CO. Boutique Pellets BF - Blast Furnace DR - Direct Reduced EAF - Electric Arc Furnace HBI - Hot Birquetted Iron

Imagine Minnesota as a carbon neutral leader in the global iron industry. We have the resources. NRRI can help make it happen.

Ongoing Work:

- Reduce energy and water use
- Reduce emissions
- Increase energy, water, and resource efficiencies

Future work:

- Developing a high-tech, high-value iron industry
- Diversifying the iron product portfolio
- Participating in a robust iron-based industry
- Accessing lean ore and waste resources

What is success?

- MN Iron Industry jobs
- MN Iron Industry profits
- Diversified Iron product portfolio

Natural Resources Research Institute

UNIVERSITY OF MINNESOTA DULUTH Driven to Discover

NRRI Duluth

(218) 788-2694 5013 Miller Trunk Hwy, Duluth, MN 55811

NRRI Coleraine (218) 667-4201 One Gayley Avenue, Coleraine, MN 55722


nrriinfo@d.umn.edu • www.nrri.umn.edu

Minnesota Water Quality Sulfate Remediation Technologies

Sulfate remediation is critical to water quality in Minnesota. NRRI is addressing sulfate in three critical areas:

NRRI Sulfate Remediation Technologies

- 1. Municipal mobile unit treatment system 50-200 PPM
- 2. Mineland Treatment system 200-500 PPM
- 3. Industrial Treatment system 500+ PPM

Natural Resources Research Institute

UNIVERSITY OF MINNESOTA DULUTH Driven to Discover NRRI Duluth (218) 788-2694 5013 Miller Trunk Hwy, Duluth, MN 55811

NRRI Coleraine (218) 667-4201 One Gayley Avenue, Coleraine, MN 55722

nrriinfo@d.umn.edu • www.nrri.umn.edu

Minnesota Water Quality Sulfate Remediation Technologies

Municipal Treatment Mobile Unit

Problem: Minnesota's standard for sulfate concentrations in wild rice waters is significantly lower than drinking water standards. Meeting the 10 parts per million goal is very expensive using reverse osmosis.

Research Solution: An inexpensive barium sulfate precipitation process was developed and scaled up to a mobile demonstration system for testing in two Minnesota communities.

Status: NRRI is performing indoor trials to optimize the process, reduce potential risks and demonstrate efficacy. Two wastewater treatment plants have agreed to field pilot tests.

Minelands Treatment

Problem: A municipal drinking water supply that uses mine pit water is threatened by high levels of sulfate. A cost-effective treatment system is needed to address this problem.

Research Solution: New, patented technology introduces a path forward to develop a peatbased media that removes sulfate from industrial and mining impacted waters.

Status: Preliminary testing shows sulfate concentrations can be reduced to as low as 10 parts per million a two-stage process: biofiltration and electrochemical treatment to be followed by the chemical precipitation.

Industrial Treatment

Problem: While it can occur naturally, elevated sulfate in freshwater systems often comes from industrial waste streams or agricultural runoff. Removal of sulfate from waste streams is a burden to many industries and municipalities.

Research Solution: Two bioreactor systems have been evaluated for scalability and industrial/community use. The goal is to significantly reduce sulfate treatment costs and improve water quality.

Status: A biological treatment with iron-based immobilization has been designed and successfully tested in phase one demonstration scale. Industry partners are engaged.