Electrical Power Systems - How they work, Present Status in MN and the Future with Renewables

Presented by – Ned Mohan, Dept of ECE, University of Minnesota <u>mohan@umn.edu</u>

> Minnesota House Energy and Climate Committee State Capitol, St. Paul, MN January 24, 2019

Ned Mohan

Oscar A. Schott Professor of Power Electronics and Systems University of Minnesota

Mark Ahlstrom

VP, Renewable Energy Policy

NextEra Energy Resources, WindLogics

Jukka Kukkonen

PlugInConnect

Outline –

- Electricity Integrating Renewables
- Renewables as "Modern Power Plants
- Prospects for EVs

Humility

"Everything we hear is an opinion, not a fact. Everything we see is a perspective, not the truth."

Marcus Aurelius, Meditations

"The greatest accomplishment of 20th century science has been the discovery of human ignorance."

Lewis Thomas

Electricity – A Basic Human Right

- 1.3 Billion people (1/6th of humanity) have no access to it
- Over 1 Billion more will be joining us in just ten short years

Climate Change – Attribution and Prediction

https://z.umn.edu/GavinSchmidt

- Poorest of the poor are at the front line

Human Activity

8

Transportation versus Electric Power Sector

Energy-related carbon dioxide emissions (Jan 1988 - Sep 2016) million metric tons of carbon dioxide (MMmt CO2)

Solar Resource is Very Abundant ...

Fossil Fuel Reserves (TWy)

Renewables per Year

So the answer is.....

- Shift all our Energy Use to Electricity
- Generate Electricity from Renewables
- Conservation
- Sustainability mindset

Science Alone Cannot Stop Global Warming - human attitudes must change.

How "clean" are Renewables?

- Wind 100 times cleaner
- Solar 25 times cleaner

Photovoltaics (PV)

Comparative Cost of Energy: How Wind and Solar Stack Up

Very basic ideas, terminologies, and apparatus in electric power systems

Electric Power Systems - AC

Interconnected North American Power Grid

> 200,000 miles of transmission lines

> All rotating in synchronism

Coal and Gas Power Plants

Hydro Power Plants

Nuclear Power Plants

Inside a Steam Power Plant

Rankine Thermodynamic Cycle in Coal and Nuclear Power Plants

Typical Efficiency: 35-40%

Combined-Cycle Gas Turbines

Typical Efficiency: 55-60%

Power Generation

Power Transformers

High Voltage Transmission Lines

What is a 3 Phase AC system?

- Three phase is generated by a generator with three sets of independent windings which are physically spaced 120 degrees around the stator.
- Voltages are labeled phase-a, phase-b, and phase-c and are the same magnitude but differ in phase angle by 120 degrees.

High Voltage Power Transmission

- Reduces power losses
- Transmission conductor can have a smaller crosssection

Power Transformers

- Step-up the voltage
- Step-down the current

Xcel Energy 15-year plan proposes cost-effective shift to renewables

100% by 2045 renewable energy bill introduced in California

Can We Follow California's Lead? Use of Retiring Assets

Source: EIA, Monthly survey Form EIA-860M, April 2017

Generators as synchronous condensers:

- Frequency regulation
- Voltage support

Batteries for Real Power Exchange for damping

San Luis Obispo County, California Customer: MidAmerican Size: 550MW (AC) Construction Time: 2011—2015 Acres: ~7,500 site Modules: ~9 million Equivalent to:

Topaz Solar Farm

Power Electronics – An Interface

Interface between different characteristics

- Bi-directional Power Flow possible
- Energy Efficiency: 95-98 percent

Realizing Power Electronics Interface

Transistors

EVs

Minnesota Rectifier

Electrifying Transportation

THE MARKET OPPORTUNITY OF ELECTRIC AUTOMATED MOBILITY SERVICES.

Charging Stations

DC Fast-Charging Infrastructure

with 16 x 31.25 kW Power Modules

Shared 750 kW

Up to **312 kW** max continuous power per station and **187 kW** max simultaneous power on all four stations

https://www.charg epoint.com/files/da tasheets/dsexpressplus.pdf

Flywheel Storage

https://www.youtube.com/watch?v=Pi5amZP5yhE

Power Electronics Group at UofM

- Over 150 MS students
- 46 PhDs so far
- 8 PhD, several MS and 3 post-docs at present

Sponsors:

- UMCEE University of Center for Electric Energy
 - Since 1981
 - Supported by 6 regional utilities
- ONR, NSF, DOE, EPRI, RDF/Xcel Energy

Our Responsibility – There is no Planet B.

Carl Sagan: There is no hint that help will come from elsewhere to save us from ourselves.

44

Thank You!

Bio of Ned Mohan:

Ned Mohan joined the University of Minnesota in 1975, where he is Oscar A. Schott Professor of Power Electronic Systems. He received his undergraduate education in India. He came to the University of Wisconsin in 1969 and earned his Masters in Nuclear Engineering, and PhD in electrical engineering under the supervision of Prof. Harold Peterson.

He has written 5 textbooks; cumulatively they have been translated in to nine languages. He has several U.S. Patents and has supervised nearly 150 graduate students, 46 of them PhDs including 11 who are working in the Twin Cities. He maintains a strong research program that at present consists of 8 PhD students and 3 post-docs.

Prof. Mohan is a Morse-Alumni Distinguished Professor and a member of the Academy of Distinguished Teachers UMN. Prof. Mohan is a Fellow of the IEEE and a member of the National Academy of Engineering.

Bio of Mark Ahlstrom

Mark Ahlstrom is President of the Board of the Energy Systems Integration Group, the non-profit educational association for the engineers, researchers, technologists and policymakers working on our evolving electricity and energy systems. ESIG's (<u>www.esig.energy</u>)history spans 30 years, starting as the Utility Wind Interest Group (UWIG) in 1989.

Based in Saint Paul, Mark was CEO of WindLogics and has been involved with numerous renewable integration studies including the Xcel Wind Integration Study (2004) and Minnesota Wind Integration Study (2006). WindLogics was acquired in 2006 by NextEra Energy, a leading clean energy company and the world's largest generator of renewable energy from the wind and sun. WindLogics continues to grow in Saint Paul as NextEra Analytics, a cutting-edge center for advanced meteorology, data science & optimization for energy and storage systems.

Mark is now Vice President of Renewable Energy Policy for NextEra Energy Resources ((<u>www.nee.com</u>). He is actively involved in many activities across North America to support the economic and reliable use of higher levels of clean energy.

Bio of Jukka Kukkonen:

Jukka Kukkonen from PlugInConnect is an EV market and business solutions consultant. Jukka has deep knowledge of the electric vehicle market and he specializes in market dynamics and real-life user perspectives.

He has built programs for utility companies, condominium and apartment building charging, workplace charging, DC fast charging, outreach and education and smart grid integration. He also teaches "EV Market and Technologies" graduate course at the University of Saint Thomas. You can find out more about his work by visiting <u>www.PlugInConnect.com</u>

Residential household

Plug-in vehicles available in Midwest (January 2019)

Midwest EVOLVE

Manufacturer									Range			Charging speed (miles/hr)			Performance					
Name	Model	Photo	Seating	PEV Type	FWD/ RWD/ AWD	Base MSRP	Federal tax credit	Price after federal tax credit	Battery size (kWh)	Electric Range (miles)	Total Range (miles)	Level 2 Charging Rate (kW)	Level 1 120v	Level 2 240v	DCFC 400+v	MPGe/MP G	Top Spd (mph)	0-60 mph (sec)	Towing capacity (lbs)	NHTSA Crash Rating
Audi	A3 E-Tron		5	PHEV	FWD	\$38,900	\$4,168	\$34,732	9	17	430	3.3	3	8	N/A	86/39	130	7.6	0	NR
BMW	i3		4	BEV	RWD	\$44,450	\$7,500	\$36,950	42	153	153 (200)	7.4	4	27	166	124 (39)	93	6.9-7.2	0.0	4 star
BMW	i8	- 8 - R	4	PHEV	AWD	\$147,500	\$3,793	\$143,707	7.2	15	330	3.3	3	7	N/A	76/28	155	4.2	0	NR
BMW	X5 xDrive40e		5	PHEV	AWD	\$62,100	\$4,700	\$57,400	9	14	540	3.3	2	5	N/A	56/24	130	6.5	0	NR
BMW	330e	-	5	PHEV	RWD	\$45,600	\$4,000	\$41,600	7.6	14	350	3.7	3	8	N/A	72/31	130	5.9	0	NR
BMW	530e		5	PHEV	RWD/ AWD	\$53,400	\$4,200	\$49,200	9.2	16	370	3.5	3	7	N/A	72/29	146	6	0	NR
BMW	740e		5	PHEV	RWD/ AWD	\$90,700	\$4,200	\$86,500	9.2	14	340	3.7	2	7	N/A	64/27	130	5.1	0	NR
Chevrolet	Bolt EV	2020	5	BEV	FWD	\$37,495	\$7,500	\$29,995	60	238	238	7.2	4	25	159	119	98	6.5	0	5 star
Chevrolet	Volt		4.5	PHEV	FWD	\$33,170	\$7,500	\$25,670	18.4	53	420	3.3	4	10	N/A	106/42	98	8.4	0	5 star
Chrysler	Pacifica Hybrid (PHEV)		7	PHEV	FWD	\$42,000	\$7,500	\$34,500	16	33	570	6.6	3	16	N/A	84/32	107	7.8	0	NR
Ford	Fusion Energi		5	PHEV	FWD	\$31,120	\$4,007	\$27,113	7.6	21	610	3.3	3	10	N/A	97/42	85	8.5	0	5 star
Honda	Clarity PHEV		5	PHEV	FWD	\$33,400	\$7,500	\$25,900	17	48	340	6.6	4	22	N/A	110/42	110	8.8	0	NA
Jaguar	I-PACE		5	BEV	AWD	\$69,500	\$7,500	\$62,000	90	234	234	7	4	18	180	76	124	4.5	0	NR
Kia	Niro PHEV		5	PHEV	FWD	\$27,900	\$4,543	\$23,357	8.9	26	560	3.3	4	10	N/A	105/46	107	9	0	NA
Mini	Cooper S E ALL4		5	PHEV	FWD	\$36,900	\$4,001	\$32,899	7.6	12	270	3.3	4	8	N/A	65/27	NA	6.8	0	NR

This table was updated by Jukka Kukkonen, PlugInConnect.

Photos and information sources: Manufacturers' websites and www.fueleconomy.gov

Find the latest version by visiting: www.pluginconnect.com/MNpevmodels.html