Burning the "Wall of Wood" Estimate of Potential Emissions from Open Burning of Waste Ash Wood

Michael Orange 8/9/19

Introduction: A beautifully iridescent green bug that hitched a ride here from China has become the most destructive and economically costly forest pest ever to invade North America. The Emerald Ash Borer (EAB) infestation threatens every one of the billion ash trees in Minnesota, including the 3 million ash trees in our urban forests.

State action to manage such infestations can be effective. For example, according to the 2008 Minnesota *Forest Protection Plan*, the state invested "nearly \$30 million a year for six years in response and replacement funds" to address the Dutch elm disease in the 1970s and 80s.¹ In today's dollars, that would equate to about \$106 million.² Unfortunately, EAB has not been given this same attention even though the problem is much greater. State support for community forests has been limited to about \$8.5 million since the infestation's detection in 2009.³

While many communities are following the science-based management approach of *save the best; replace the rest*,⁴ all will be faced with massive amounts of dead ash wood, a pressing issue that has been called a "wall of wood." Staff of the Minnesota Pollution Control Agency (MPCA) asked Michael Orange⁵ to address an under-researched aspect of the infestation: air pollutants that would be emitted if communities use open burning as a method to manage the waste ash wood. Because there are significant unknowns, this resultant "wall of wood" estimate (WoW Estimate) can, at best, be considered a rough first approximation.

Findings: The WoW Estimate includes the following key components and an accompanying spreadsheet analysis that includes the calculations and data sources:

• Ash tree amounts: The WoW Estimate relies on the 2010 statewide survey completed by the Minnesota Department of Natural Resources (DNR) of the trees located within 66 feet of the roadway's edge in residential and commercial areas in 700 communities statewide.⁶ The DNR survey predicted a total of about 3 million public and private ash trees. The WoW Estimate

¹ 2008 MN Forest Protection Plan: http://mn.gov/frc/docs/MFRC_ForestProtectionPlan_2008-01-01_Report.pdf, p.12. However, Professor David French's report, "History of Dutch Elm Disease in Minnesota: A Problem Denied" (1993), asserts that state funding was "an aggregate amount of almost \$56 million over several biennium."

² Assumes, for simplicity, that the \$30 million was invested in 1979. It would be worth \$106 million today based on the following inflation calculator: http://www.in2013dollars.com/us/inflation/1979?amount=30

³ From detection in 2009 to 2018, the state invested approximately \$7.5 million in community forests for the management of EAB (including \$150,000 in pass through funding from the US Forest Service). The state approved an additional \$1 million to be utilized in FY 2020. https://www.echopress.com/news/1633667-dnr-offers-grants-diversify-community-forests-against-pests-disease-and-damage

⁴ Professor French's report (above cited) states this same lesson in his history of the Dutch elm disease in Minnesota, "A basic principle overlooked by many is that it is better to save what you have, what is already established, than hope that the newly planted will replace what is being lost."

⁵ Michael Orange is a member of the MPCA's Retiree Environmental Technical Assistance Program (RETAP), orange_michael@msn.com, 952-905-1448.

⁶ Minnesota Department of Natural Resources survey, DNR 2010 Community Tree Survey.

 $http://files.dnr.state.mn.us/assistance/backyard/treecare/forest_health/ash_elmRapidAssessment/rapidassessment_AshElm.p.df.$

Burning the "Wall of Wood:" Estimate of Potential Emissions from Open Burning of Waste Ash Wood

excludes ash trees within the 50 cities that have adopted EAB management plans because most of these cities will likely manage waste ash without open burning. Since a healthy, mature ash tree can be preserved for over 20 years for less than removing and replacing it, the WoW Estimate assumes that 20% of the best quality public and private trees will be preserved (about 195,000 trees statewide). The WoW Estimate "grows" the remaining ash trees to their 2019 sizes and predicts the dry weight of waste wood to total about 1.5 million US tons over the course of the infestation,⁷ about 50,000 tons per year on average over the next 30 years (refer to Attachment 2, "Amounts of wood").⁸

• **Management by open burning:** Virtually all of the cities currently managing the infestation have local options for dealing with the waste wood other than via open burning, including 4 energy facilities within range that accept chipped wood as biofuel,⁹ adequate storage space within city limits, and end users for wood chips and wood products (e.g., lumber, plywood, particle board, and paper pulp).¹⁰ This, most likely, will not be the case as the infestation spreads throughout the rest of the state.

Since the 1980 Minnesota Solid Waste Management Act, the state has enforced a municipal solid waste (MSW) hierarchy that prioritizes waste prevention and reuse over composting, waste to energy, and landfilling. Saving the best ash trees with insecticide preserves their natural life and benefits and delays their eventual entry into the waste management system. The 1980 state law bans the open burning of MSW. Logically, the open burning of waste ash wood should be considered the worst management option.

Studies of the infestation have resulted in an "EAB Death Curve" that predicts the annual percentage of tree losses. The WoW Estimate assumes most cities will be able to manage a *base level* of the loss equal to 10% of their untreated ash trees each year without resorting to open burning. The "EAB Death Curve" predicts that, on average, 71% of the ash tree deaths will occur during the peak years (years 8-11). With the assumed 10% *base level* capacity during the 4 peak years (equaling 40% of the total), the remaining 31% of the waste wood generated during the peak years may be subject to open burning (referred herein as the *eligible portion* of the total amount of ash wood).¹¹ Since approximately 71% of the total ash deaths will occur during the 4 peak years, the *eligible portion* of the <u>entire</u> amount of waste wood generated by the infestation equals 22% (31% X 71% = 22%). There being no apparent guides to predict the future, the WoW Estimate includes a range of assumptions regarding the actual percentage of this *eligible portion* of waste ash wood managed by open burning: 10%, 20%, and 30% (refer to Attachment 3, "Emission estimates").

⁷ Because pollutant emission rates for open burning are based on the *dry weight* of wood, dry weights are used for the calculations. Since the *green weight* of ash wood is about 18% heavier, cities will have to deal with about 1.8 million tons of ash wood when it is removed.

⁸ Although the WoW Estimate did not "grow" the trees over the future study period, the increased tree size is within the estimate's admittedly large margin of error. It is assumed that all below-ground wood will be ground in place or left in place.

⁹ District Energy in St. Paul, the University of Minnesota, the Koda Energy plant in Shakopee, and Minnesota Power's Hibbard generating station in Duluth.

¹⁰ Staff from various state agencies are developing a report that will provide extensive information regarding the EAB infestation and the various management options available. Expand/replace this footnote when EAB report is ready.

¹¹ The Minnesota Department of Natural Resources controls open burning permits. The agency's approval process could require applicants to provide evidence that no other viable alternatives are economically feasible.

• **Total emissions:** Using emission factors from the US Environmental Protection Agency and the MPCA for greenhouse gases and 5 of the 6 regulated air pollutants (*criteria* pollutants), the WoW Estimate lists the potential emissions for the range of burning assumptions (Table 1). For example, if local governments managed on average 20% of their total waste ash wood via open burning (about 290,000 tons), emissions would include approximately 600,000 tons of greenhouse gases (GHG), 3,000 tons of fine particulate matter (PM_{2.5}), 22,000 tons of carbon monoxide, and nearly 3,000 tons of volatile organic compounds (refer to Attachment 4, "Emission estimates").

Table 1: Total Greenhouse Gas and Criteria Pollutant Emissions from Open Burning of Waste
Ash Wood (rounded US tons)

Open Burning %	Tons of Ash Wood and Debris	Biogenic GHG ¹	PM-2.5	СО	SO ₂	VOC	NO _x
30%	441,000	901,000	5,000	33,000	90	4,200	600
20%	294,000	601,000	3,000	22,000	60	2,800	400
10%	147,000	300,000	2,000	11,000	30	1,400	200
Notes:							
1	-		mbustion or decomp the combustion of fo		gically-based mate	rials; wood, in th	is case.

Table 2: Annual Greenhouse Gas and Criteria Pollutant Emissions from Open Burning of Waste Ash Wood, 2019-2049 (emissions in rounded US tons)

Burnin	ng Scenarios	Biogenic GH	G Emissions	Selec	ted Criteri	a Pollutant	Comparison	ns to Statewid	e Emissions					
Open Burning %	Annual Tons of Ash Wood and Debris ¹	US Tons	GHG Comparison to Cars (# of cars) ²	PM _{2.5}	VOC	Comparison to Campfires ³	Share of GHG Emissions ⁴	Share of PM _{2.5} Emissions ⁵	Share of VOC Emissions ⁵					
30%	13,000	27,000	27,000 6,000 150 120 801,000 0.08% 0.66% (
20%	9,000	18,000	4,000	100	80	554,000	0.05%	0.44%	0.13%					
10%	4,000	9,000	2,000	50	40	246,000	0.03%	0.22%	0.07%					
Notes:														
1	Mark Abrahamson, Mn Dept. of Agriculture, predicts that Minnesota will continue to see a spread rate of ~33% of the national average, or about 1.7 counties per year. That translates to another 20-40 years before EAB is in every county. "In southern Minnesota we might be seeing a 12-year cycle [as was the case in Eastern cities], but in the Twin Cities I think it is taking longer." This might be due to our harsher winters and stronger control measures, e.g., sanitation, preemptive removals, and treatments. This analysis adopts the midpoint of the estimate by the MN Dept. of Ag.: 30 years.													
2	emits about 4.6	metric tonnes of	carbon dioxide	per year (4	.17 US tons	nt of GHG emissio). Source: EPA, I-passenger-vehic	-	typical passen	ger vehicle					
3	The Minnesota Pollution Control Agency estimated the amount of wood burned in a typical campfire (32.5 lbs., refer to the "MPCA emission factors" sheet). The above figures show the number of typical campfires that would emit criteria pollutants equal to those from the open burning percentage assumption.													
4			-	-		se category" for 20 gas-emissions-da		nt year available	e, 34.323					
5						ent year available ide-and-county-ai		.260 million lbs	s.) and VOC					

Burning the "Wall of Wood:" Estimate of Potential Emissions from Open Burning of Waste Ash Wood

- Annual emissions: It is impossible to know how long it will take for the infestation to kill virtually every unprotected ash tree in Minnesota. With help from the staff of the Minnesota Department of Agriculture, the WoW Estimate assumed it will be another 30 years before most unprotected ash trees will be infested or removed. Table 2 lists the average annual emission estimates for the 3 burning percentage assumptions over this assumed 30-year period, and compares the annual emissions to those from cars and campfires. For example, if 20% of the remaining ash trees are openly burned (about 10,000 tons per year), GHG emissions would be comparable to those from about 5,000 cars and the criteria pollutant emissions would be similar to that of over 600,000 typical campfires over an average year. The table also provides comparisons to annual statewide emissions.
- **Health effects:** Attachment 1 includes information regarding the health effects of the applicable criteria pollutants. A critical pollutant of open burning is fine particulate matter (PM_{2.5}). A recent study emphasized that "even moderate levels of [PM_{2.5}] can cause lung function impairment that rivals the damage caused by smoking."¹²

GreenStep Cities EAB Calculator: The website for the MPCA's GreenStep Cities program will include a calculator that provides rough approximations of the costs and benefits of saving the best ash trees and replacing the rest based on the total number and average size of ash trees in an urban forest. To address the consequences of open burning, it also calculates the GHG and applicable criteria pollutants from open burning any number of trees, plus the everyday equivalency comparisons included above.

Conclusion: The WoW Estimate demonstrates that massive amounts of ash wood will need management until the infestation runs its course, about 1.5 million tons, and that open-air burning would result in significant local levels of criteria pollutants and GHG emissions annually. Hopefully, the WoW Estimate and subsequent analyses will help lead to increased public action to mitigate the potential environmental, economic, and public health impacts of the infestation.

Attachments:

- 1. Excerpts from: "America's Children and the Environment," Third Edition, Updated October 2015, *Criteria Air Pollutants, Environments and Contaminants*.
- 2. Context: Overall Description of the Estimate
- 3. Amounts of wood
- 4. Emission estimates
- 5. Emission factors
- 6. MPCA emission factors
- 7. Emission comparison
- 8. Ash characteristics

¹² "Even moderate air pollution can harm," *Star Tribune*, 7/21/19, SH2.

Attachment 1

Excerpts from: "America's Children and the Environment"

Third Edition, Updated October 2015, Criteria Air Pollutants, Environments and Contaminants, US Environmental Protection Agency¹³

Childhood is often identified as a susceptible lifestage in the National Ambient Air Quality Standards reviews, because children's lungs and other organ systems are still developing, because they may have a preexisting disease (e.g., asthma), and because they may experience higher exposures due to their activities, including outdoor play.

Particulate Matter: Particulate matter (PM) is a generic term for a broad class of chemically and physically diverse substances that exist as discrete particles (liquid droplets or solids) over a wide range of sizes. Particles originate from a variety of man-made stationary and mobile sources, as well as from natural sources such as forest fires. Particles may be emitted directly, or may be formed in the atmosphere by transformations of gaseous emissions such as oxides of sulfur (SO_x), oxides of nitrogen (NO_x), and volatile organic compounds (VOCs).

Effects associated with exposures to both [fine particulate matter, $PM_{2.5}$] and $PM_{10-2.5}$ include premature mortality, aggravation of respiratory and cardiovascular disease (as indicated by increased hospital and emergency department visits), and changes in sub-clinical indicators of respiratory and cardiac function. Such health effects have been associated with short- and/or long-term exposure to PM. Exposures to $PM_{2.5}$ are also associated with decreased lung function growth, exacerbation of allergic symptoms, and increased respiratory symptoms. Children, older adults, individuals with preexisting heart and lung disease (including asthma), and persons with lower socioeconomic status are considered to be among the groups most at risk for effects associated with PM exposures. Information is accumulating and currently provides suggestive evidence for associations between long-term $PM_{2.5}$ exposure and developmental effects such as low birth weight and infant mortality due to respiratory causes.

Sulfur Dioxide: People with asthma are especially susceptible to the effects of sulfur dioxide. Shortterm exposures of asthmatic individuals to elevated levels of sulfur dioxide while exercising at a moderate level may result in breathing difficulties, accompanied by symptoms such as wheezing, chest tightness, or shortness of breath. Studies also provide consistent evidence of an association between short-term sulfur dioxide exposures and increased respiratory symptoms in children, especially those with asthma or chronic respiratory symptoms. Short-term exposures to sulfur dioxide have also been associated with respiratory- related emergency department visits and hospital admissions, particularly for children and older adults.

Nitrogen Dioxide: Nitric oxide (NO) and nitrogen dioxide (NO₂) are emitted by cars, trucks, buses, power plants, and non-road engines and equipment. Emitted NO is rapidly oxidized into NO₂ in the atmosphere. Exposure to nitrogen dioxide has been associated with a variety of health effects,

¹³ Downloaded 8/5/19: https://www.epa.gov/sites/production/files/2015-10/documents/ace3_criteria_air_pollutants.pdf. The final section on volatile organic compounds is from the MPCA website "Volatile Organic Compounds," downloaded 8/5/19: https://www.pca.state.mn.us/air/volatile-organic-compounds-vocs.

Burning the "Wall of Wood:" Estimate of Potential Emissions from Open Burning of Waste Ash Wood

including respiratory symptoms, especially among asthmatic children, and respiratory-related emergency department visits and hospital admissions, particularly for children and older adults

Carbon Monoxide: Exposure to carbon monoxide reduces the capacity of the blood to carry oxygen, thereby decreasing the supply of oxygen to tissues and organs such as the heart. People with several types of heart disease already have a reduced capacity for pumping oxygenated blood to the heart, which can cause them to experience myocardial ischemia (reduced oxygen to the heart), often accompanied by chest pain (angina), when exercising or under increased stress. For these people, short-term CO exposure further affects their body's already compromised ability to respond to the increased oxygen demands of exercise or exertion. Other potentially at-risk populations include those with chronic obstructive pulmonary disease, anemia, diabetes, and those in prenatal or elderly lifestages.

The period of fetal development may be one of particular vulnerability for adverse health effects resulting from maternal exposure to some criteria air pollutants. This may occur if maternal exposure to air pollutants is transferred to the fetus during pregnancy; for example, lead and PM have both been shown to cross the placenta and accumulate in fetal tissue during gestation. In addition to the findings noted above regarding associations of prenatal PM exposure and adverse birth outcomes (such as low birth weight), limited studies of prenatal exposure to criteria air pollutants have reported that exposure to PM and oxides of nitrogen and sulfur may increase the risk of developing asthma as well as worsen respiratory outcomes among those children that do develop asthma. However, it is often difficult to distinguish the effects of prenatal and early childhood exposure because exposure to air pollutants is often very similar during both time periods.

Volatile organic compounds:¹⁴ Volatile organic compounds (VOC) play a pivotal role in the creation of ground-level ozone. Ground-level ozone can irritate the eyes, nose, and throat, and can aggravate asthma and other lung diseases, including bronchitis. Exposure to high levels of ground-level ozone can increase the risk of premature death in individuals already suffering from heart or lung disease. Children, whose lungs are still forming and many of whom spend a large amount of time outdoors, are at particular risk under high ozone concentrations.

Exposure to VOCs themselves can cause a variety of health effects, including irritation to the eyes, nose, and throat; headaches and the loss of coordination; nausea; and damage to the liver, kidneys, or central nervous system. Some VOCs are suspected or proven carcinogens.

¹⁴ This section is excerpted from the MPCA website "Volatile Organic Compounds," downloaded 8/5/19: https://www.pca.state.mn.us/air/volatile-organic-compounds-vocs.

Minnesota Statewide "Wall of Wood" Estimate											
Updated: 8/9/19											

Context: Overall Description of the Estimate

Purpose: Preemptive removals and deaths of ash trees from the Emerald Ash Borer infestation in Minnesota will result in what some describe as a "wall of wood" debris. Some of this wood will be used by the wood products industry, some will help fuel energy plants (e.g., District Energy in St. Paul, the University of Minnesota, the Koda Energy plant in Shakopee, and Minnesota Power's Hibbard generating station in Duluth), and some will be chipped and used as mulch or for paper pulp. However, for most of the debris, an end use may not be available or economical and instead it may be managed by open burning or landfilling. The Minnesota Pollution Control Agency is interested in estimating the potential environmental impacts associated with managing this ash wood stream. The purpose of this analysis is to estimate the tons of ash wood that will be available in the future and the potential greenhouse gas (GHG) and criteria pollutant emissions from open burning. Accompanying this spreadsheet analysis is a report (in Word) that summarizes the findings.

Primary data sources: According to the Minnesota Department of Natural Resources (DNR), Minnesota has about a billion ash trees statewide (source: *Rapid Assessment of Ash and Elm Resources in Minnesota Communities*, 1/5/07, Minnesota Department of Natural Resources). The estimates in this analysis rely primarily on the statewide survey of <u>urban</u> trees completed in 2010 by the DNR (*DNR 2010 Community Tree Survey*, http://files.dnr.state.mn.us/assistance/backyard/treecare/forest_health/ash_elmRapidAssessment/rapidassessment_AshElm.pdf). The DNR's statewide, tree estimates are based on survey results of trees located within 66 feet of the roadway's edge in residential and commercial areas. The figures include both public and private ash trees. The survey will be an under-estimate of total trees to be managed because it did not include trees beyond the survey boundary. It did not include trees in non-managed areas; however, these trees are likely to die in place rather than be managed. The emission factors for open burning come from the MN Pollution Control Agency.

Methodology for "Amounts of Wood" sheet: Table 2 includes the DNR's urban, ash tree data for 2010 and "grows" the trees for 9 years to get current likely sizes. Table 1 addresses the urban forests already decimated by preemptive removals or EAB-related tree deaths in the 50 Minnesota cities that have adopted EAB management plans. Since virtually all of this wood is coming from cities with nearby facilities that will process the wood into usable mulch, energy plant fuel, or other product, it is assumed that none will be openly burned. This wood is subtracted from Table 2 before the table estimates the weight of the remaining wood debris. This analysis does not estimate how these future amounts of wood debris will be processed. Because data is lacking, the analysis relies on very rough estimates in Table 1 and 2 (refer to highlighted cells). However, the estimates would have to be off by factors of 2 to 4 before they would have a significant effect (+/- 10%) on the total ton estimate (refer to Table 3, the sensitivity analysis).

Methodology for estimating the *eligible portion* of the total waste stream: Studies of the infestation have resulted in an "EAB Death Curve" that predicts the annual percentage of tree losses. Table 1 on the "Emission estimates" sheet assumes most cities will be able to manage a base level of the loss equal to 10% of their untreated ash trees each year without resorting to open burning. The "EAB Death Curve" predicts that, on average, 71% of the ash tree deaths will occur during the peak years (years 8-11). With the assumed 10% base level capacity during the 4 peak years, 31% of the waste wood generated during the peak years may be subject to open burning (referred herein as the *eligible portion* of the total amount of ash wood). Since approximately 71% of the total ash deaths will occur during the 4 peak years, the eligible portion of the entire amount of waste wood generated by the infestation equals 22% (31% X 71% = 22%). There being no apparent guides to predict the future, the WoW Estimate includes a range of assumptions regarding the actual percentage of this *eligible portion* of waste ash wood managed by open burning: 10%, 20%, and 30% (refer to the "Emission estimates" attachment).

Methodology for "Emission estimates" sheet: Table 2 uses a variety of emission factors (listed on the "Emission factors" and "MPCA emission factors" sheets) to estimate the potential GHG and criteria pollutant emissions from open burning based on a range of assumptions regarding the percent of the total amount of wood to be burned. Table 4 includes an estimate of the likely annual emissions. It is impossible to know how long it will take for the infestation to kill virtually every unprotected ash tree in Minnesota. With help from the staff of the Minnesota Department of Agriculture, the estimate assumed it will be another 30 years before most unprotected ash trees will be infested or removed (Table 3).

Emission comparisons: In order to make the scale of the emission estimates easier to understand, Table 2 on the "Emission estimates" sheet lists the average annual emission estimates for the 3 burning percentage assumptions over this assumed 30-year period, and compares the annual emissions to those from cars, campfires, and statewide emissions. The sources and assumptions for these comparisons are noted on the "Emission comparisons" sheet.

M		Waad	Ill Fatimate											
	nnesota Statewide "Wall of ted: 8/9/19	W 000	1" Estimate			-	1		1	-				
Upda	leu: 8/9/19													
Am	ounts of Waste Ash Wood													
	e 1: Estimate of ash trees lost to EAB	-	ptive removal											
for c	ties implementing EAB management	plans												
	Categories	Source	Trees prior to											
	g	Source	Infestation											
Minr	eapolis trees (city-owned)	1	38,000											
	eapolis trees (non-city owned)	1	162,000											
	aul trees (city-owned) aul trees (non-city owned)	2	26,000											
-	in other cities	3	110,000 192,000											
Tota			528,000											
T . L I														
Tabi	e 2: Estimate of statewide impacts			ll Ash Trees		Diameter at	Breast Height (DRH) 1"-5"	Diameter at Br	east Height (T	RH) 5"-12"	Diameter a	t Breast Height	(DBH) >12"
1	Urban Ash Population Estimates	Source	F	di Asii 11ees		Diameter at	breast freight (DBII) 1 - 5	Diameter at Di	east freight (E	JDII) 3 -12	Diameter a	i breast freight	(DBII) > 12
			Total	Healthy	Low Quality	Total	Healthy	Low Quality	Total	Healthy	Low Quality	Total	Healthy	Low Quality
Ash t	rees from 2010 DNR survey	4	2,968,513	2,865,361	103,147	655,958	644,991	10,967	1,125,961	1,081,811	44,150	1,186,589	1,138,559	48,030
	Percent of Total Estimated average 2010 DBH	5	100% 10.6	97% 10.5	3% 11.8	100%	98%	2%	100%	96%	4%	100% 17.0	96%	4%
	Estimated average 2010 DBH	6	15.5	15.4	16.1	6.8			13.4			21.2		
Trees	from Table 1		528,000											
	stimate of ash trees, 2019	7&8	2,440,513	2,355,708	84,801	539,285	530,268	9,016	925,690	889,393	36,297	975,534	936,047	39,487
Estin	nated future removals: Estimated removal percentage	9	92.0%	91.7%	100%		100%	100%		99%	100%		80%	100%
	Estimated number of trees, 2019	,	2,244,406	2,159,605	84,801	539,285	530,268	9,016	916,796	880,499	36,297	788,325	748,838	39,487
	Estimated DBH, 2019		32,664,687	31,279,869	1,384,819	3,667,137	3,605,826	61,311	12,285,066	11,798,684	486,382	16,712,485	15,875,359	837,126
	Average DBH		14.6	14.5	16.3									
	Average height (ft.)	10				27			32			47		
	Estimated ave. <i>dry weight</i> per tree to be removed (lbs.)	11	1,155			352			586			2,367		
	Estimated total weight to be removed (US tons) Estimated total annual weight to be	11	1,296,611			94,991			268,606			933,014	886,280	
	removed (US tons rounded to nearest thousand)	12	43,000			3,000			9,000			31,000		
	Estimated trees assumed to be preserved		196,103	196,103						8,894			187,209	
	Estimated trees assumed to be		8%											
Tabl	preserved as a % of total trees													
Tabi	e 3: Sensitivity Analysis							Current Total	Change by	Change by				
			Considerati	ons				Tons	+10%	-10%				
	ficance of estimates in Table 1:			100// 0 - 1		. R. I I								
-	timates on Table 1 include very rough gr crent effect on total ton estimate.	iesses. W	hat if off by $+ / -$	10% (refer to h	iighlighted cell)	? Resultant total	ton estimate.	1,296,611	1,324,663	1,268,559				
	ctor Table 1 could be off to result in a si	gnificant	effect (+/- 10%) to	otal ton estimat	te.				4.6	(4.6)				
	nclusion: The accuracy of the estimates			ts on the total	ton estimate. Ta	able 1 estimates	could be off by							
	actor of 4 before having a +/- 10% effect ficance of treatment estimates in Table 2		tal ton estimate.											
Ta	ble 2 includes very rough guesses of the		percentages for ma	ature ash trees (refer to highligh	nted cells). What	if off by + / -	1,296,611	1,207,983	1,385,239				
	%? Resultant total ton estimate.								-6.8%	6.8%				
	ctor Table 2 estimate could be off to resu	ılt in a sig	gnificant effect (+,	- 10%) total to	n estimate.				(1.5)	1.5				
	nclusion: The accuracy of the treatment					tal ton estimate.	The treatment							
est	imates could be off +/- 50% before havin	ng a +/- 1	0% effect on the t	otal ton estima	te.									
Sour	ces:	ı – I			1		1	1	1					1
1	Source for the number of trees: City of	Minneap	olis. https://www	.minneapolispa	rks.org/park_ca	re_improvemen	ts/invasive_spec	ies/terrestrial_in	wasive_species/en	nerald_ash_bor	er/			
2	Source for the number of city-owned tr be at the same ratio as for Minneapolis		1 0								0	1		
3	More than 50 communities have adopted ash trees each within the same 66-foot	zone used	for the MN DNR	2010 Commu	nity Tree Surve	y.				-		-		
4	Source: Minnesota Department of Natu figures include public and private ash to	rees. Sour	rce: http://files.dn	r.state.mn.us/a	ssistance/backya							s edge in reside	ential and comme	ercial areas. The
5	Assumed averages are the median DBH Trees are "grown" for 9 additional years					ionshins For Tw	in Cities Shade	Trees." Lee F F	relich. Denartman	t of Forest Rec	ources Univers	ity of Minneso	ta. June 1997 (m	fer to "Ash
7	Derived proportionately from the DNR			. realeaning Dil	nensionai Kelat	ionompo r or 1 w	Chies Shade	, LU D. F.	ienen, Departitien	Corrototics	caroos, Onivers	ny or winneso	, Julie 1772 (IC	
8	Virtually all of the wood debris from c							nearby facilities t	hat will either pro	cess the wood	into usable mu	lch or for energ	y plant fuel. The	refore, it is
9	subtracted from the 2019 statewide and The estimate assumes a very small percent							ld be treated. Th	is is based on a a	nsultation wit	h leff Hafnar C	onsulting Arb	with Dainho	w Treecare
10	Average height is from the "Ash charac			with a 10-1	וווס חווג דורה ב	J 20/0 OF large fi	caruiy nees wou	ia oc ireateu. Ifi		nsunaton wit	ii son namei, C	onsuring AID	mat with Kalilot	, Treedle,
11	Below-ground wood is assumed to be	ground in	place and not ren											
	1931.pdf). Since the emission factors a < 11 DBH		he dry weight of (0.26153(D^2)^1			ions are based of	n the green weig	ht, the average w	eight calculations	have been dee	reased by 18%	to make the en	nission calculatio	ns more
	>11 DBH		(0.20133(D ⁻ 2) ⁻¹ (0.10743(D ⁻ 2)) ⁻				-		-					
	Average of both formula		(0.18448(D^2))^					i i						1
12	Assumes it will take an additional 30 y													

Minne	sota Statev	vide "Wal	of Wood	" Estim	nate				
Updated:						1	1	1	[
1									
Emissio	n Estimates								
Table 1:	Estimated peak	-period remov	als and open	burning p	percentage	\$			
•• 1	a	Tree Deaths	Possible %		•	-		-	·
Year ¹	% Deaths ¹	per City ²	Burned ³	100		EAB "D	eath Curve"		
8	11.5%	423	1.5%	90					T
9	24.5%	902	14.5%	80				1	[
10	24.5%	902	14.5%	70 <u></u> <u></u>			/	/	
11	10.5%	386	0.5%	Percent Ash Mortality			/		
8 to 10	71.0%	2,613	31%	V 4SA					
1 to 16	100%	3,680	22%	os 0					
				20					
				0		3 4 5 6		11 12 13 14	15 16
				-	0 1 2		er First EAB Infestation	11 12 13 14	15 16
Notes:					•				
	Peak years and	the annual perc	entage of ash tr	ee deaths a	are from the	e "EAB Death Cu	irve." Source:	Minnesota Dep	partment of
1	Agriculture. Do	wnloaded 7/1/1	19: https://wwv	v.mda.state	e.mn.us/sit	es/default/files/in	line-	-	
2	Assumes 4,000	ash trees per a	verage commun	ity and 8%	6 treatment	rate (refer to "Ar	nounts of woo	od" sheet).	
						ng early years (ye			
3						ık years (years 8-			
5					0 trees for a	in average city w	ith 4,000 ash	trees and an 8%	6 treatment
	rate), and that the	he remainder m	ight be openly	burned.					
T 11 A		• • • •		C 1		• (10.4	1 1)		
		emissions fro	m open burni	ng of asn	wood debl	ris (US tons rou	naea)		
Open Burning	Tons of Ash Wood and	Biogenic	PM-2.5	со	SO ₂	VOC	NO _x		
burning %	Debris	GHG ¹	F IVI-2.5	CO	302	voc	THO _X		
30%		705.000	5 000	20,000	20	2 700	500		
20%	389,000 259,000	795,000 529,000	5,000	29,000 19,000	80 50	3,700 2,500	500 300		
10%	130,000	266,000	2,000	19,000	30	1,200	200		
Notes:	150,000	200,000	2,000	10,000	50	1,200	200		
1	Biogenic GHG	results from th	e combustion o	r decompo	sition of b	iologically-based	materials;		
1	wood, in this c	ase. Anthropog	enic GHG resul	ts from the	e combusti	on of fossil fuels			
	Estimate of sele	r		1			~ .	~	
Burnir	ng Scenarios	Biogenic GH		Selec	ted Criteri	a Pollutant	Comparison	ns to Statewid	e Emission
Open	Annual Tons		GHG Comparison			Comparison	Share of	Share of	Share o
Burning	of Ash Wood	US Tons	to Cars (# of	PM _{2.5}	VOC	Comparison	GHG	PM _{2.5}	VOC
%	and Debris ¹		$(\pi \text{ or})^2$			to Campfires ³	Emissions ⁴	Emissions ⁵	Emission
30%	13,000	27,000	6,000	150	120	801,000	0.08%		0.20
20%	9,000	18,000	4,000	100	80	554,000	0.05%		0.13
10%	4,000				40	246,000	0.03%		
Notes:	,	- ,	,						
	Mark Abrahamso	on. Mn Dept. of	Agriculture, pred	licts that N	finnesota w	ill continue to see	a spread rate o	of~33% of the n	ational
		*) years before EAI	*		
1						ut in the Twin Cit			
						ation, preemptive	removals, and	treatments. This	analysis
	adopts the midp	oint of the estin	nate by the MN I	Dept. of Ag.	: 30 years.				
	The figure lists t	he number of ca	rs that would en	nit an equiv	alent amou	nt of GHG emissio	ons in a year. A	typical passeng	ger vehicle
2	emits about 4.6								
	https://www.epa	.gov/greenvehic	eles/greenhouse	-gas-emissi	ions-typical	-passenger-vehic	le		
	The Minnesota I	Pollution Contro	ol Agency estim	ated the am	ount of woo	d burned in a typ	ical campfire (32.5 lbs., refer to	o the "MPC
3						campfires that we	· ·		
	from the open bu	arning percentag	ge assumption.						
	Based on statem	ide emissions ir	the "Agricultur	e forestry	and land us	e category" for 20	16 (most recer	nt vear available	34 373
4			-	•		gas-emissions-da		n year avallable	, 34.323
		-	-			-			
5					-	ent year available		.260 million lbs	.) and VOC
	(122.096 millio	n Ibs.) Source: 1	https://www.pca	state.mn.us	s/air/statewi	de-and-county-ai	r-emissions		

- puart	xd: 8/9/19									
Emis	sion Factors			•		•			-	
	Emission Factors	CO ₂ ¹	CH ₄ ²	N ₂ O ³	Total GHG ⁴	PM-2.5 ²	CO ²	SO ₂ ²	VOC ²	NOx ²
Wood	as biomass fuel: 5									
	d as biomass fuel (g/US ton)	1,640,000								
	d as biomass fuel (lbs./US ton)	3,616								
	ourning of wood: 5									
Oper	n burning of wood (g/kg)			0.19						
	n burning of wood (lbs./US ton)	1	14.4	0.38		23.6	149	0.4	18.9	2.6
	n burning of wood (lbs./short t	on)			4,088	23.6	149	0.4	18.9	2.6
3	Source: "Temperate Forest" emis amount of wood on Table 2 on the									
3 4 5	18% to enable a more accurate dr Biogenic greenhouse gases. Incon https://www.pca.state.mn.us/site The green weight of ash is genera	y-wood-to-dry-w porates global w s/default/files/lra Illy about 18% h	arming factors q-2sy19.pdf igher than the	on. Refer to : $CH_4 = 25$, dry weight.	footnote 5 b $N_2O = 298$ The total w	elow. . Source: M eights of tre	linnesota Pol	lution Cont mounts of v	trol Agen wood" sh	eet have
4	18% to enable a more accurate dr Biogenic greenhouse gases. Incon https://www.pca.state.mn.us/site The green weight of ash is genera been decreased by 18% to make t	y-wood-to-dry-w porates global w s/default/files/lra Illy about 18% h	arming factors q-2sy19.pdf igher than the	on. Refer to : $CH_4 = 25$, dry weight.	footnote 5 b $N_2O = 298$ The total w	elow. . Source: M eights of tre	linnesota Pol	lution Cont mounts of v	trol Agen wood" sh	eet have
4	18% to enable a more accurate dr Biogenic greenhouse gases. Incon https://www.pca.state.mn.us/site The green weight of ash is genera been decreased by 18% to make t rsions:	y-wood-to-dry-w porates global w s/default/files/lra lly about 18% h hem compatible	arming factors q-2sy19.pdf igher than the	on. Refer to : $CH_4 = 25$, dry weight.	footnote 5 b $N_2O = 298$ The total w	elow. . Source: M eights of tre	linnesota Pol	lution Cont mounts of v	trol Agen wood" sh	eet have
4	18% to enable a more accurate dr Biogenic greenhouse gases. Incon https://www.pca.state.mn.us/site The green weight of ash is genera been decreased by 18% to make t rsions: pounds per gram	y-wood-to-dry-w porates global w s/default/files/lra lly about 18% h hem compatible 0.002205	arming factors q-2sy19.pdf igher than the	on. Refer to : $CH_4 = 25$, dry weight.	footnote 5 b $N_2O = 298$ The total w	elow. . Source: M eights of tre	linnesota Pol	lution Cont mounts of v	trol Agen wood" sh	eet have
4	18% to enable a more accurate dr Biogenic greenhouse gases. Incon https://www.pca.state.mn.us/site The green weight of ash is genera been decreased by 18% to make t rsions: pounds per gram US ton per kilogram	y-wood-to-dry-w porates global w s/default/files/lra lly about 18% h hem compatible 0.002205 0.001102	arming factors q-2sy19.pdf igher than the	on. Refer to : $CH_4 = 25$, dry weight.	footnote 5 b $N_2O = 298$ The total w	elow. . Source: M eights of tre	linnesota Pol	lution Cont mounts of v	trol Agen wood" sh	eet have
4 5 Conve	18% to enable a more accurate dr Biogenic greenhouse gases. Incon https://www.pca.state.mn.us/site The green weight of ash is genera been decreased by 18% to make t rsions: pounds per gram	y-wood-to-dry-w porates global w s/default/files/lra lly about 18% h hem compatible 0.002205 0.001102 907.185	ood comparise arming factors q-2sy19.pdf igher than the with the above	n. Refer to : CH ₄ = 25, dry weight. e dry-wood	footnote 5 b N ₂ O = 298 The total w emission fac	elow Source: M eights of tre tors. The ex	linnesota Pol ees on the "A acception is th	lution Cont mounts of v	trol Agen wood" sh	eet have
4 5 Conve	18% to enable a more accurate dr Biogenic greenhouse gases. Incon https://www.pca.state.mn.us/site The green weight of ash is genera been decreased by 18% to make t rsions: pounds per gram US ton per kilogram kilogram per US ton	y-wood-to-dry-w porates global w s/default/files/lra lly about 18% h hem compatible 0.002205 0.001102 907.185	ood comparise arming factors q-2sy19.pdf igher than the with the above	n. Refer to : CH ₄ = 25, dry weight. e dry-wood	footnote 5 b $N_2O = 298$ The total w emission factors s of biomas	elow Source: M eights of tre tors. The ex	linnesota Pol ees on the "A cception is th	lution Cont mounts of v	wood" sh factor for	eet have
4 5 Conve	18% to enable a more accurate dr Biogenic greenhouse gases. Incon https://www.pca.state.mn.us/site The green weight of ash is genera been decreased by 18% to make t rsions: pounds per gram US ton per kilogram kilogram per US ton	y-wood-to-dry-w porates global w s/default/files/Ira Illy about 18% h hem compatible 0.002205 0.001102 907.185 for species emi cal Forest	ood comparise arming factors q-2sy19.pdf igher than the with the above	n. Refer to : CH ₄ = 25, dry weight. e dry-wood of e dry-wood of ferent types Crop Resid	footnote 5 b $N_2O = 298$ The total w emission factors s of biomas	elow. . Source: M eights of tre tors. The ex s burning ^a . Pasture Maintenance	linnesota Pol ees on the "A cception is th	Iution Cont mounts of v e emission Tempe Forest	rol Agen vood" sh factor for rate E F (1.02) 1.	eet have r N ₂ O.

Minn	esota Statev	vide "Wall of Woo	od" Estima	nte				
Jpdated	1: 8/9/19							
MPCA	A Emission Fa	ctors						
Data fr	om the Minnesot	a Pollution Control Agen	cy		1			
Typical	fire is 2 bundles	of wood.						
There a	e 170 bundles per	cord						
		d is 1.38 tons of wood dur	Ŭ	neating seaso	on.			
Гурісаl	fire	0.011764706	0.008525149	tons/wood				
Туре	SCC	Pollutant	Amount	Units	Throughput Material	Units	Emission Estimates	Units
Е	2104008700	СО	149	LB	WOOD	TON	1.270247229	LBS
Е	2104008700	PM10-PRI	23.6	LB	WOOD	TON	0.201193521	LBS
Е	2104008700	PM25-PRI	23.6	LB	WOOD	TON	0.201193521	LBS
Е	2104008700	VOC	18.9	LB	WOOD	TON	0.16112532	LBS
Е	2104008700	METHANE	14.4	LB	WOOD	TON	0.122762148	LBS
Е	2104008700	NOX	2.6	LB	WOOD	TON	0.022165388	LBS
Е	2104008700	AMMONIA	1.8	LB	WOOD	TON	0.015345269	LBS
Е	2104008700	FORMALDEHYDE	1.79	LB	WOOD	TON	0.015260017	LBS
Е	2104008700	ACETALDEHYDE	1.07	LB	WOOD	TON	0.00912191	LBS
Е	2104008700	BENZENE	0.686	LB	WOOD	TON	0.005848252	LBS
Е	2104008700	PHENOL	0.472	LB	WOOD	TON	0.00402387	LBS
Е	2104008700	SO2	0.4	LB	WOOD	TON	0.00341006	LBS
Е	2104008700	CRESOL MX IS	0.357	LB	WOOD	TON	0.003043478	LBS
Е	2104008700	NAPHTHALENE	0.265	LB	WOOD	TON	0.002259165	LBS
Е	2104008700	BUTADIENE, 13	0.157	LB	WOOD	TON	0.001338448	LBS
Е	2104008700	ACROLEIN	0.123	LB	WOOD	TON	0.001048593	LBS
Е	2104008700	BENZO(A)PYRE	0.001	LB	WOOD	TON	8.52515E-06	LBS
Е	2104008700	MERCURY	5.36E-06	LB	WOOD	TON	4.56948E-08	LBS
Е	2104008700	TCDF,2378	1.25E-09	LB	WOOD	TON	1.06546E-11	LBS
Е	2104008700	OCDD,TOT	6.66E-10	LB	WOOD	TON	5.67681E-12	LBS
Е	2104008700	PECDF,23478	6.44E-10	LB	WOOD	TON	5.48929E-12	LBS
Е	2104008700	PECDF,12378	4.56E-10	LB	WOOD	TON	3.88683E-12	LBS
Е	2104008700	HXCDF,123478	3.56E-10	LB	WOOD	TON	3.03445E-12	LBS
Е	2104008700	HPCDD1234678	3.16E-10	LB	WOOD	TON	2.6935E-12	LBS
Е	2104008700	HPCDF1234678	3.00E-10	LB	WOOD	TON	2.55754E-12	LBS
Е	2104008700	PECDD,12378	2.58E-10	LB	WOOD	TON	2.19912E-12	LBS
Е	2104008700	HXCDD,123478	2.50E-10	LB	WOOD	TON	2.13094E-12	LBS
Е	2104008700	HXCDD,123678	2.50E-10	LB	WOOD	TON	2.13094E-12	LBS
Е	2104008700	HXCDD,123789	2.50E-10	LB	WOOD	TON	2.13094E-12	LBS
Е	2104008700	HPCDF1234789	2.34E-10	LB	WOOD	TON	1.99455E-12	LBS
Е	2104008700	TCDD,2378	2.28E-10	LB	WOOD	TON	1.94341E-12	LBS
Е	2104008700	HXCDF,123678	2.20E-10	LB	WOOD	TON	1.87523E-12	LBS
Е	2104008700	HXCDF,123789	1.98E-10	LB	WOOD	TON	1.69111E-12	LBS
Е	2104008700	OCDF,TOT	1.67E-10	LB	WOOD	TON	1.42006E-12	LBS
Е	2104008700	HXCDF,234678	1.65E-10	LB	WOOD	TON	1.40642E-12	LBS
	source:				1		1	
		gan (MPCA) <megan.kuh< td=""><td>Stennes@state.</td><td>mn.us></td><td></td><td></td><td></td><td></td></megan.kuh<>	Stennes@state.	mn.us>				
	riday, May 24, 20							
		PCA) <philipp.muessig@s< td=""><td>state.mn.us></td><td></td><td></td><td></td><td></td><td></td></philipp.muessig@s<>	state.mn.us>					
Subject	emissions factor	rs for wood						
òr me f	for a "backyard fir	of a spreadsheet Azra share "with some assumptions a es should be correct.						
	-	es should be context.					I	
ampfi	re weight	for a campfire (lbs.)	32.5					

Minnesota	Statewide	"Wall	of W	'ood" F	Estim	ate										
Updated: 8/9/19	Statemat	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		004 1		are	1			1 1					1	Ì
opullud. 0/ // 1/																
Ash Charact	eristics							1							1	1
Table 6 from Pro	edicting Dimens	ional Rela	tionshi	ins For Tw	vin Citi	es Shade	Trees	Lee E.								
Frelich, Departm	0			*						Table from <i>How to</i>	0					
https://www.fore				-						https://www.shod	lor.org/s	succeed	lh1/suc	ceedh1/we	nghtree/math1-	content.html
DBH	Height			cted dimer	-			[]					[
5.9	24.4	Age		Ht	Htw	Htb	Cw	Ca								
6.8	27.0	6	1.5	3.5	3.9	2.4	2.	19.4	ר '	Free species		Size		Algorith	n (calculates we	eight in pounds)
7.5	29.0	7	1.9	6.6	4.9	3.0	4.	28.7	-							
8.6	31.7	8	2.4 2.8	9.5 12.1	5.9 6.8	3.6 4.1	5. 7.		S	Southern Pine Coasta	l plane	< 5 in	ches	0.32214($D^{2}H)^{0.91330}$	
9.7	34.2	10	3.3	14.5	7.7	4.6	8.	69.3							,	
10.8	36.4	11 12	3.8 4.3	16.8 18.9	8.6 9.4	5.1 5.5	9. 11.	106.5				≥ 5 in	ches	0 19821	$(D^2)^{1.06419}$ (H) ⁰	.91330
11.4 12.4	37.6 39.5	13 14	4.8	20.8 22.6	10.3	5.9 6.3	12.							5.17021	() (11)	
12.4	41.1	15	5.9	24.4	11.9	6.7	14.	176.3	s	Southern Pine Piedmo	ont	< 5 in	ches	0 28557	$(D^2H)^{0.92236}$	
14.6	43.0	16 17	6.4 7.0	26.0 27.5	12.6	7.1 7.4	16. 17.			Journer I me I leunik	om		enes	0.28557	(D-H)	
15.6	44.6	18	7.5	29.0	14.1	7.7	18.	260.3				5 5 in	ahaa		- 2.1.05385 0	02226
16.6	46.1	19 20	8.1 8.6	30.4 31.7	14.8	8.1 8.4	19. 20.					≥ 5 in	cnes	0.18703	$(D^2)^{1.05385}(H)^0$	92230
17.6	47.4	21	9.2	33.0	16.1	8.6	21.	355.4	L							
18.5	48.7	22 23	9.7 10.3	34.2 35.3	16.8	8.9 9.2	22. 23.			Hard Hardwoods		< 11 i	nches	0.38315	$(D^2H)^{0.92045}$	
19.4	49.9	24 25	10.8	36.4 37.5	18.0	9.5 9.7	24.		F							
20.3	51.0	26	11.9	38.5	19.2	9.9	26.	530.4				≥ 11 i	nches	0.11710	$(D^2)^{1.16763}(H)^{0.1}$	92045
21.2	52.1	27 28	12.4 13.0	39.5 40.4	19.8	10.2 10.4	27.		\vdash							
22.0	53.1	29	13.5	41.3	20.9	10.6	28.	641.1	S	Soft Hardwoods		< 11 i	nches	0.26153(D^2) ^{1.12422} (H) ^{0.9}	93871
		30 31	14.0 14.6	42.2 43.0	21.4 21.9	10.8 11.0	29. 30.									
		32	15.1	43.8	22.4	11.2	31.	753.2				≥ 11 i	nches	0.10743(D^2) ^{1.12422} (H) ^{0.9}	93871
		33 34	15.6	44.6 45.4	22.9 23.4	11.4 11.6	31. 32.								_ , ()	
		35	16.6	46.1	23.8	11.8	33.		s	Sweet gum		< 11 i	nches	0.245120	D ² H) ^{0.95220}	
		30	17.6	46.8 47.4	24.3 24.7	12.0 12.1	34. 34.	939.0						0.24312(D II)	
		38 39	18.0 18.5	48.1 48.7	25.2	12.3 12.4	35.					< 11 j	nches	0.0000	D ²) ^{1.14754} (H) ^{0.9}	05220
		40	19.0	49.3	26.0	12.6	36.	1047.8				2111	nenes	0.09605(D ²) ^{1,14/54} (H) ^{0,2}	5220
		41 42	19.4 19.9	49.9 50.5	26.4		37.						1		2 0.00008	
		43	20.3	51.0	27.1	13.0	38.	1153.3	1	Yellow Poplar		< 11 1	nches	0.16258(D ² H) ^{0.99008}	
		44 45	20.8 21.2	51.6 52.1	27.5 27.9	13.2 13.3	39. 39.	1221.6							0.1.04157	
		46	21.6	52.6 53.1	28.2	13.4	40. 40.	1255.1				≥11 i	nches	0.12701(D^2) ^{1.04157} (H) ^{0.9}	9008
			22.0	55.1	20.5	13.5	40.	1200.1	L						1	
										↓						+
										+						+
										┼───┼						+