
Minnesota House Testimony: Climate and Energy Finance and Policy Committee 3 March 2022

Natural Resources Research Institute

UNIVERSITY OF MINNESOTA DULUTH Driven to Discover

Survey of Technology Options for Longer Duration Energy Storage in Minnesota

Discover the Economy of the Future

Examination of Non-Lithium Battery Energy Storage Concepts

D.R. Fosnacht, D.M. Peterson, E. Myers

June 2021

Funding:

Funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR).

Innovative Research • Minnesota Value • Global Relevance

Problem Statement

To optimize renewable energy efficiency and minimize challenges, a portfolio of longer duration storage technologies beyond short duration battery storage is needed to reduce carbon dependency and enhance energy security.

Natural Resources Research Institute

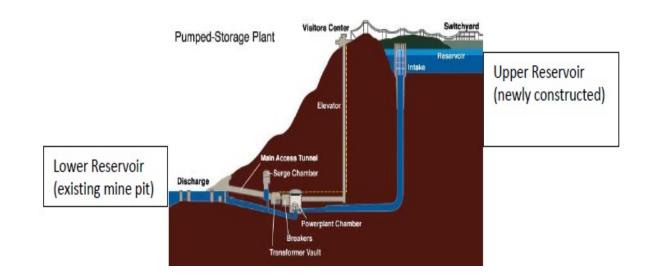
UNIVERSITY OF MINNESOTA DULUTH Driven to Discover

Report Organization

Part 1: Technology Survey

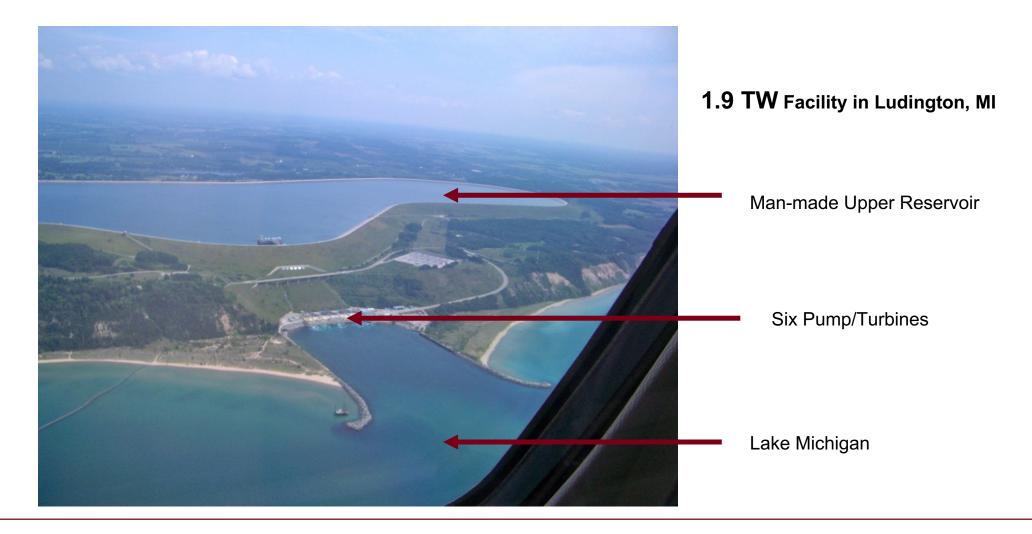
- 1. Li-Ion Battery (Energy contained in Electrodes)
- 2. Gravity (utilize topographic features)
- 3. Pressure (drive rotating mechanical equipment to produce energy)
- 4. Hydrogen and ammonia (chemical agents for energy)
- 5. Flow Batteries (energy contained in electrolytes)

Part 2: Technology Siting Analysis

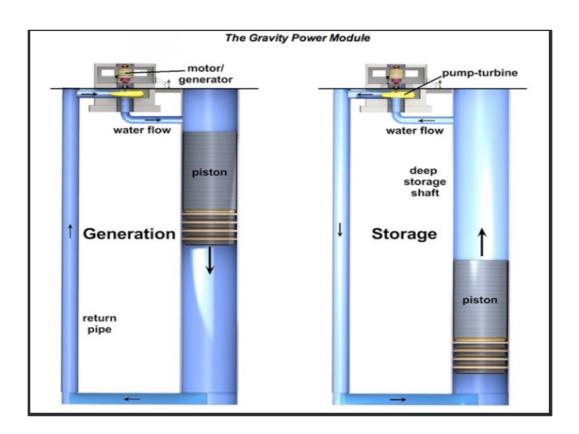

Base Comparison: Li Ion Batteries

ltem	Parameter(s)
Components	Electrodes, electrolyte, integrated cells
Round Trip efficiency (%)	75-85
Project Costing (\$/kWh)	367
Project Lifespan (Y)	5-10
Locatability	Anywhere
Capacity (MW)	1 to 300
Footprint (>35 MW)	Medium

Concerns:

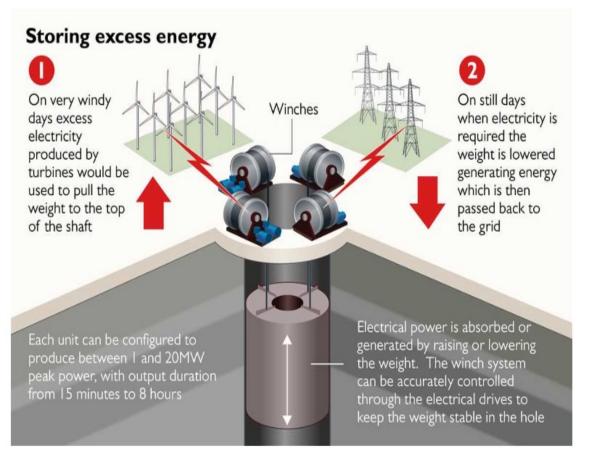

- Requires access to materials
- Longevity
- Safety

Gravity: Pump Hydro Energy Storage



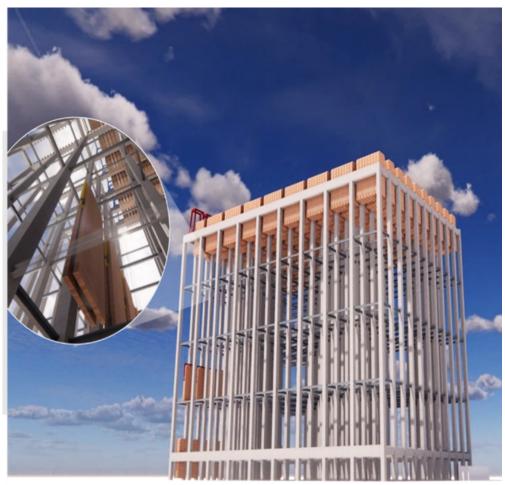
Item	Parameter(s)
Components	Higher, Lower reservoir, Pump/turbine, penstock
Round Trip efficiency (%)	80 (Similar)
Project Costing (\$/kWh)	165 (Lower)
Project Lifespan (Y)	50 (Longer)
Locatability	Specific Geology
Capacity (MW)	100 to 2,000
Footprint	Very Large

Example of Pump Hydro Facility


Gravity: Gravity Power

ltem	Parameter(s)
Components	Sealed shaft, water return pipe, weighted piston, piston seals, pump/turbine, water as media
Round Trip efficiency (%)	60 (Lower)
Project Costing (\$/kWh)	125-543
Project Lifespan (Y)	60 (Longer)
Locatability	Anywhere a shaft can be driven
Capacity (MW)	>40
Footprint	Small to Medium

under development


Gravity: Gravitricity

Pressure cap: hydrogen storage Heat pump: in lower part of shaft

Item	Parameter(s)
Components	100 m to 1000 m deep shaft, weights and cabling with motor/generators, Quick change weight reservoir at top, pressurized shaft for hydrogen storage, deep heat exchanger for heat pump service
Round Trip efficiency (%)	80-90 (Better)
Project Costing (\$/kWh)	\$171 (Lower)
Project Lifespan (Y)	50+ (Longer)
Locatability	Anywhere a shaft can be driven
Capacity (MW)	1-20, but other services provided
Footprint	Small

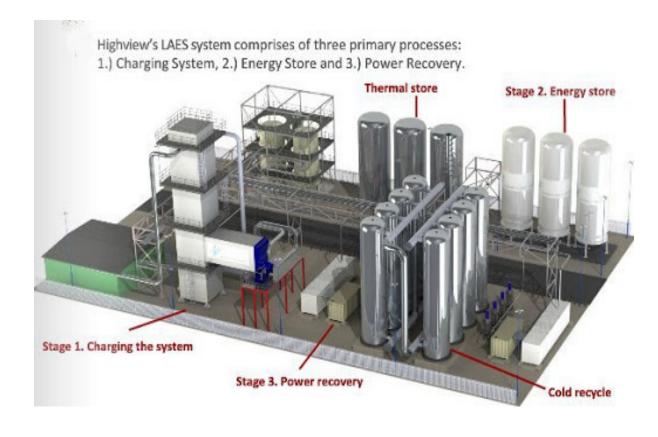
Gravity: Energy Vault (Ev_x Configuration)

Can sequester coal ash power plant waste in blocks

Item	Parameter(s)
Components	Electric motor/generator, 36 T weights, 120 m high structure, modular construction
Round Trip efficiency (%)	78-80
Project Costing (\$/kWh)	\$200 -350 depending on desired duration and waste revenue (Lower)
Project Lifespan (Y)	40+ (Longer)
Locatability	Specific Geology
Capacity (MW)	1-35 and modular
Footprint	Small

Near term active projects

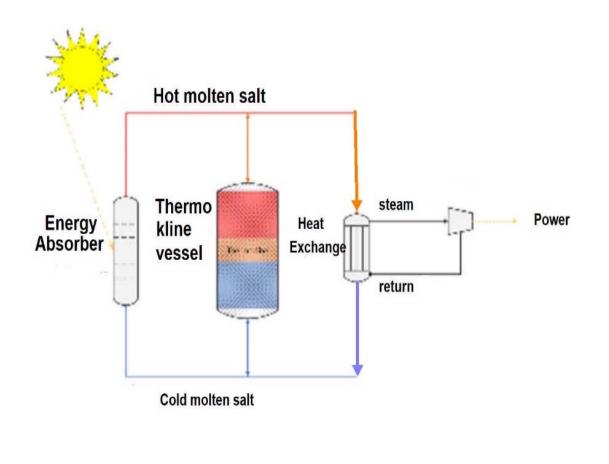
Gravity: Advanced Rail


Item	Parameter(s)
Components	Height differential on land from 6° to 50° slope; rail system or cable system, motor, weighted cars or designed weights
Round Trip efficiency (%)	70-80 (Similar)
Project Costing (\$/kWh)	168 (Lower)
Project Lifespan (Y)	40+ (Longer)
Locatability	Specific Geology
Capacity (MW)	>50-700
Footprint	Medium to Large

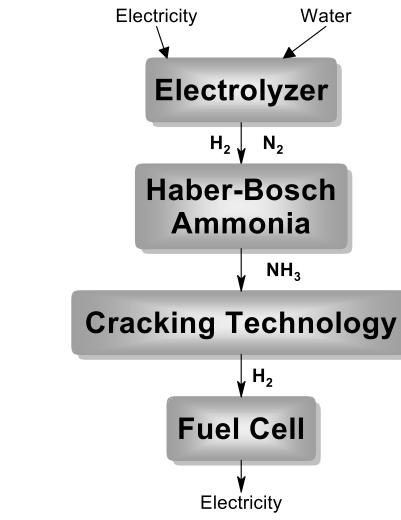
Pressure: Advanced Compressed Air (Hydrostor)

Reservoir: open or closed-loop Plant Thermal Storage	Heat exchangers Turbine generator Compressor
Air line Hydraulic Conduit	Charge As compressed air is sent into the air storage cavern, water is displaced via a flooded decline or shaft.
	Discharge As water enters the air storage cavern, hydrostatic pressure forces air to the surface.
Purpose-built air storage cavern	

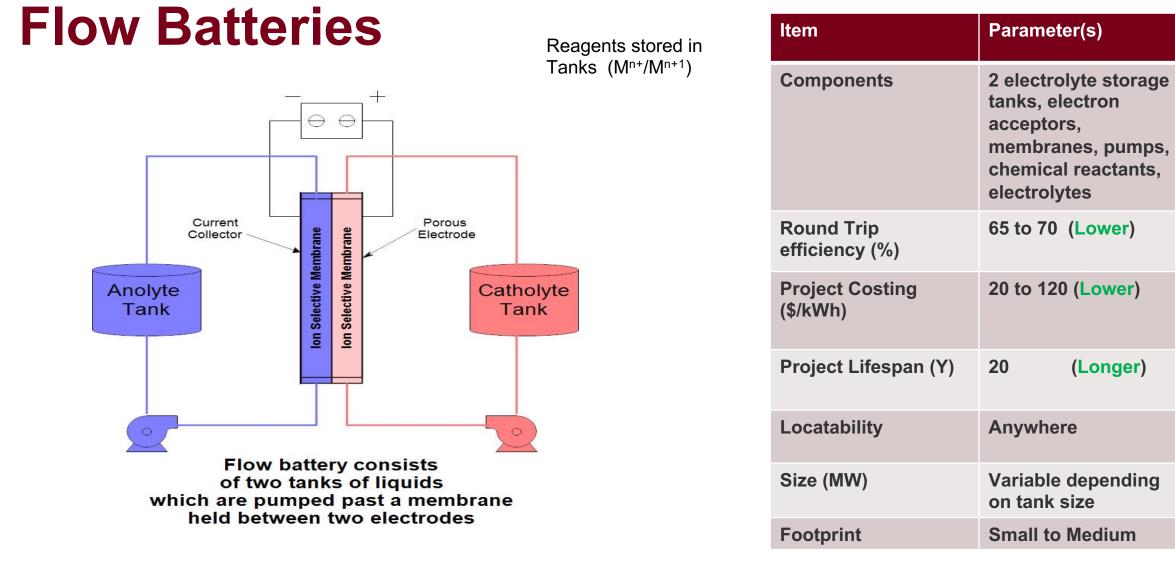
Item	Parameter(s)
Components	Compressor, turbine, heat recovery equipment, upper water source, air storage cavern, hydraulic connection
Round Trip efficiency (%)	>60 (Lower)
Project Costing (\$/kWh)	150-300 (Lower)
Project Lifespan (Y)	40+ (Longer)
Locatability	Specific Geology
Capacity (MW)	>50-many hundreds
Footprint	Medium


Pressure: Liquid Air (Highview Power)

Use of Waste Heat can increase efficiency
Employs largely Conventional Equipment Used in Gas Separation


Item	Parameter(s)
Components	Cryogenic compression, heat capture, liquid storage tanks, evaporator, turbine
Round Trip efficiency (%)	60 to >75 (<mark>Lower)</mark>
Project Costing (\$/kWh)	54 (Lower)
Project Lifespan (Y)	30-50+ (Longer)
Locatability	Anywhere, better efficiency if source of waste heat available
Size (MW)	>50
Footprint	Medium to Large

Heat Storage

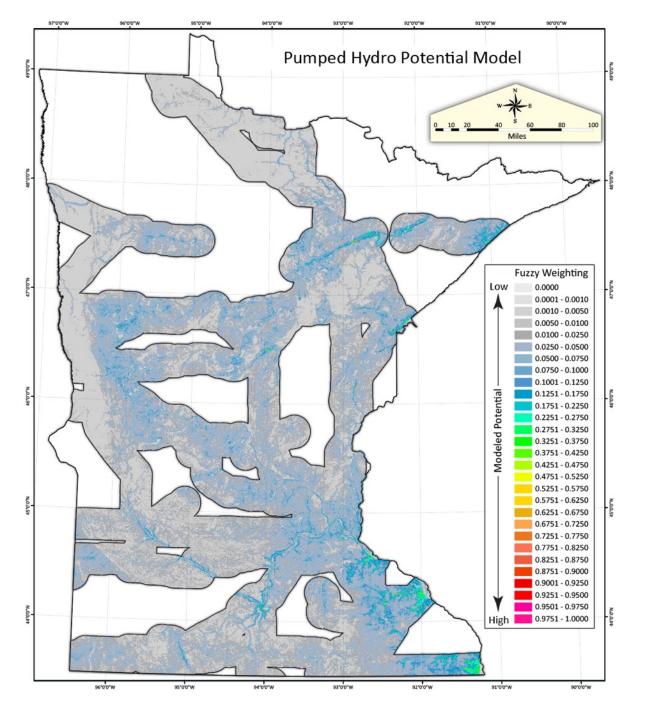


ltem	Parameter(s)
Components	1 to 2 insulated tanks, heat exchangers, piping, heat source, turbine, working fluid - molten salt, steam or super critical CO ₂
Round Trip efficiency (%)	>70 (Lower)
Project Costing (\$/kWh)	? Depends on heating source, heat storage and thermal transfer media
Project Lifespan (Y)	30 (Longer)
Locatability	Anywhere, but waste heat source advantageous
Capacity (MW)	>15 depending on heat source and tank sizes
Footprint	Small to Medium

Hydrogen: Hydrogen and Ammonia Use

Item	Parameter(s)
Components	Electrolyzer, Storage Tanks, Fuel cells or conventional boiler, pipeline, or conversion to ammonia with cracking facility
Round Trip efficiency (%)	65 to >75 (Lower)
Project Costing (\$/kWh)	?
Project Lifespan (Y)	30 (Longer)
Locatability	Anywhere
Capacity (MW)	1 to >1,000
Footprint	Small to Medium

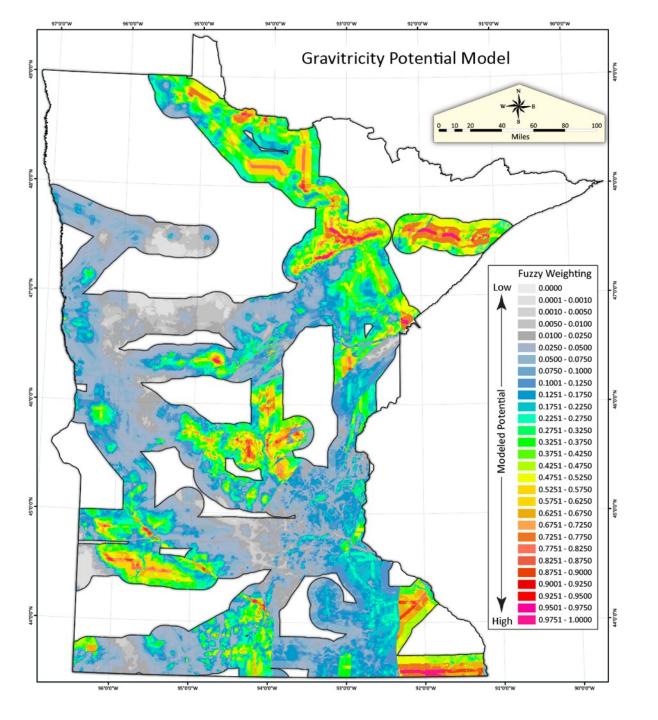
Needs inexpensive reagents – Mn iron?


Part 2: Technology Siting Analysis

UNIVERSITY OF MINNESOTA DULUTH Driven to Discover

Factors Considered in Location Analysis

- Nearness to the Grid
- Topography
- Depth to Bedrock
- Faults in the Rock
- Water Resources (lakes and rivers)
- Mining features (past and present)
- Closeness to national and state parks
- Native American reservations
- Geology of location

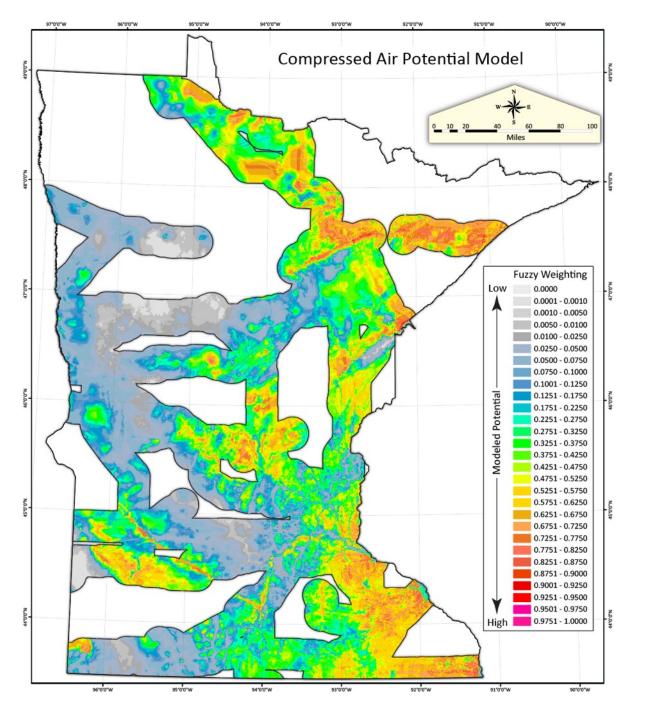

Pumped Hydro

Requires 350' of relief and water sources for an upper and lower reservoir.

Data Modeled includes:

- 1) Proximity to major power lines
- 2) Lakes
- 3) River systems
- 4) Open pit mines

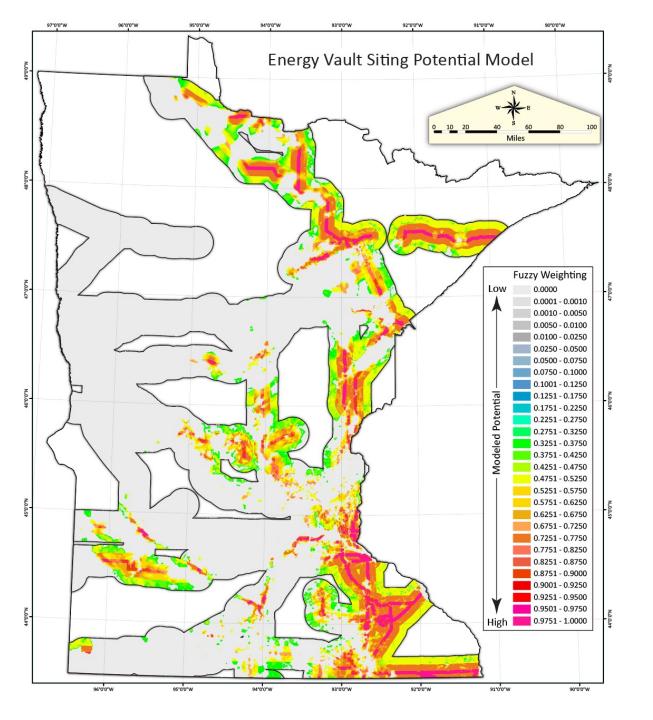
(High and Low ground differences and source of water)



Gravitricity

Requires a new or repurposed mine shaft

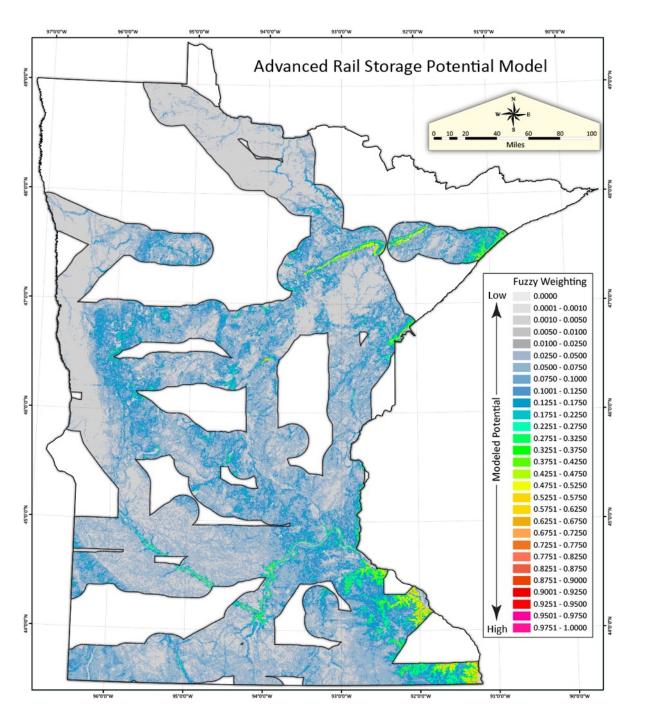
Data Modeled includes:


- 1) Proximity to major power lines
- 2) Location of historic shafts
- 3) Depth to bedrock
- 4) Bedrock geology (strength)

Advanced Compressed Air (Hydrostor) Requires a purpose-built underground cavern surface reservoir.

Data Modeled includes:

- 1) Proximity to major power lines
- 2) Depth to bedrock
- 3) Precambrian geology
- 4) Paleozoic geology
- 5) Faults
- 6) Topographic relief



Energy Vault

Requires 3-5 acres of land as well as minimum depth to bedrock to support the system.

Data Modeled includes:

Proximity to major power lines
Depth to bedrock

Advanced Rail Storage

Requires 800' of relief and 20% to 50% grades.

Data Modeled includes:

Proximity to major power lines
Topographic relief
Open pit mines

Example: Incline railroad – if Duluth only still had one

Conclusions

- A variety of non-Li battery technologies are under active development/demonstration
 - Offer short <u>and</u> longer duration storage
 - Unique siting requirements
 - High efficiencies, reduced cost
 - May utilize waste materials
- Most emerging technologies are applicable to MN landforms & geology
 - Opportunity for use of under-utilized brownfield assets
- A data base and online tool pin-points the most promising locations across Minnesota for the various technologies

Next Steps

- Policies to incentivize creation and installation of portfolio of energy storage options
- Ongoing review and update of technology platforms; continued dialog with developers and interested stakeholders
- Refinement of location criteria for the various technologies

Thank You