Managing Minnesota's Climate Risks

Jessica Hellmann

Executive Director, Ecolab Chair in Environmental Leadership, & Professor Institute on the Environment

Heidi Roop

Assistant Professor of Climate Science & Extension Specialist, Dept. of Soil, Water, and Climate Co-Lead, Minnesota Climate Adaptation Partnership

Managing climate <u>risks</u> can result in <u>resiliency</u> of our infrastructure, environment and social systems.

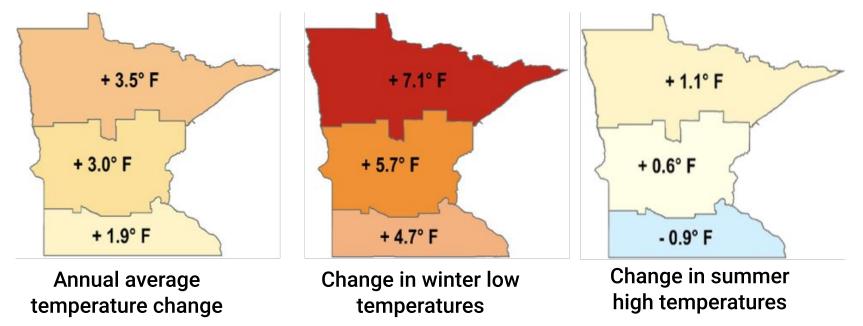
- Our capital investments are, and will continue to be, impacted by climate extremes.
- Our exposure to these extremes is, in part, a function of our preparedness.
- The choice today is whether we will be *proactive* or *reactive*.

Change is here.

Average global temperature has increased over 2.0°F since the 1880's.

Change is *here*.

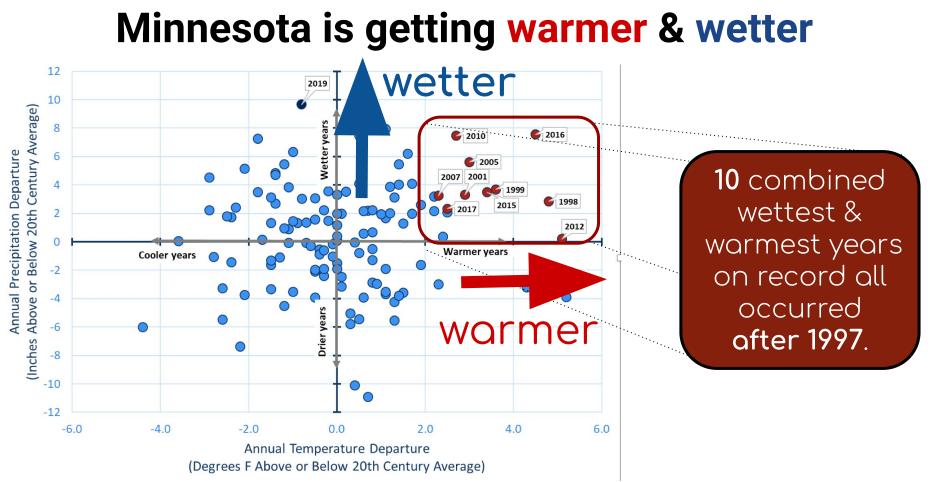
Minnesota's average annual temperature has increased by nearly 3°F since 1895.



In Minnesota, we are observing change at different rates and scales.

Minnesota is warming. Our winters are warming fastest.

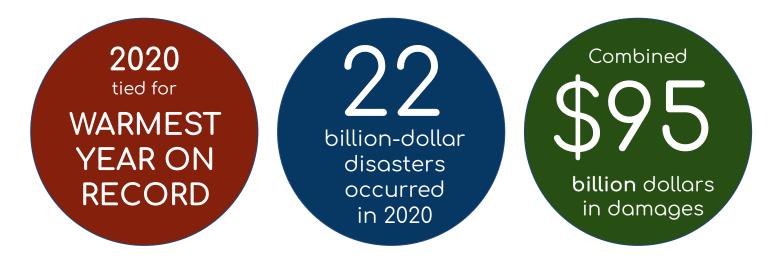
Total Temperature Change 1895-2019



Average annual precipitation is increasing.

MN is experiencing more frequent & heavy downpours.

Shifting to warmer, wetter conditions.




Increasing precipitation has elevated overall flood risk, causing disruption to transportation and damage to property and infrastructure across the Midwest.

We are incurring costs from these changes today.

"2020 was a historic year of extremes."

- NOAA National Centers for Environmental Information

Both observations & future projections indicate increases in very heavy precipitation.

Data: NCA, 2018; Photo: H. Roop

These costs are projected to increase in the future.

Winter & spring precipitation are projected to increase

Average **annual** damages from increased flood risk in the Midwest are projected to exceed

> 500 million

by the end of this century

by 2050 (in 2015 dollars)

Data: Angel et al., 2018

AVERAGE WINTER MINIMUM TEMPERATURE IS PROJECTED TO BE NEARLY 10°F WARMER BY MID-CENTURY

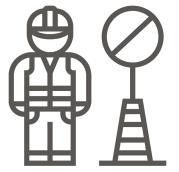
Relative @ 1981-2010 for 2050-2075 | MN Department of Health

MINNESOTA IS PROJECTED TO EXPERIENCE 5 to 15 MORE DAYS PER SUMMER WITH MAXIMUM TEMPERATURES ABOVE 95°F BY MID-CENTURY

Timeframe: 2041-2070 | Data: Pryor et al., 2014

Extreme heat creates material stress on roads and buildings, bridge expansion joints, water infrastructure and railroad tracks.

Data: Angel et al., 2018; EPA; WUCA, 2020

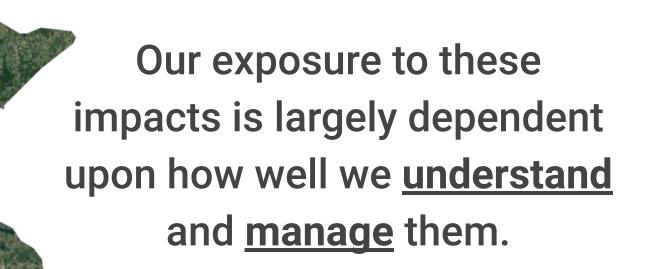

The EPA estimates that higher temperatures at the end of the century associated with unmitigated climate change would result in approximately:

\$6 billion annually in added road maintenance costs (in 2015 dollars)

\$1 billion annually in impacts to rail transportation maintenance costs (in 2015 dollars)

\$33 billion *annually* in losses in labor and associated economic revenue

(in 2015 dollars)


The Midwest is among the regions with the largest expected damages to infrastructure, including the highest estimated damages to roads.

Data: Angel, 2018; EPA, 2017; Photo: Flooding in Rushford, MN 8/07; courtesy of MN DNR Floodplain Program

Climate extremes are costly.

How we experience these extremes depends on:

Climate-ready communities, infrastructure & economies

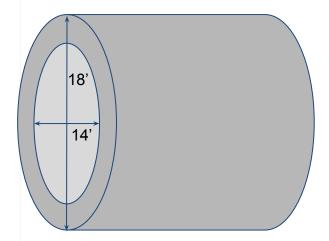
How well we **prevent** further warming *(mitigation)* How well we **prepare** for the changes we've set in motion *(adaptation)*

For each dollar **invested in natural hazard mitigation**, governments can save between \$6 - \$12.

Shifting Our Stance

Building resilience requires a shift from being *reactive* to *proactive*.

Reactive: fixing climate damage


Duluth News Tribune

Oct. 30, 2017. Bob King / Forum News Service

Proactive: change planned design specs

Ship Canal Water Quality Project, Seattle, WA

Proactive: change planned design specs

Mercy Joplin Hospital Joplin, MO

US Climate Resilience Toolkit

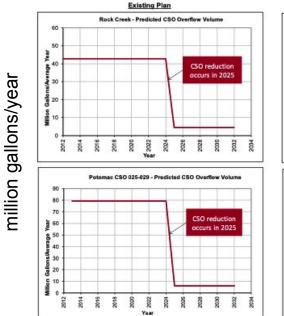
Reactive → proactive?

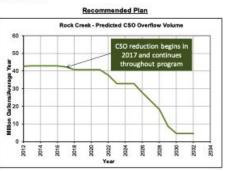
Duluth News Tribune

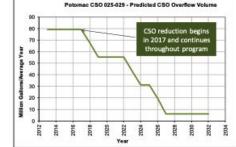
Oct. 30, 2017. Bob King / Forum News Service

Strategies

- Rebuild (*reactive*)
- Build for resistance or resilience (proactive)
- Retreat
- Change expectations (e.g., for maintenance or useful life)
- "Smart" for enhanced system management
- Alternatives to built infrastructure (e.g., nature-based solutions)


System management





Green infrastructure

CSO Reduction versus Time

Aaron Volkening / Flickr

Year

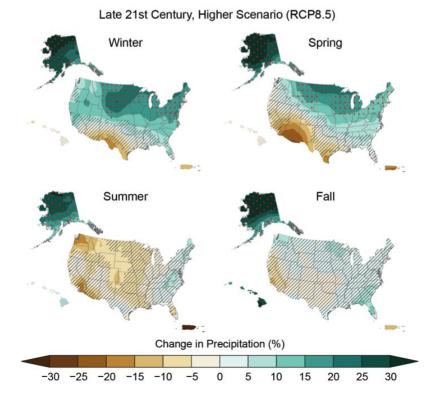
District of Columbia, Water & Sewer Authority 2015

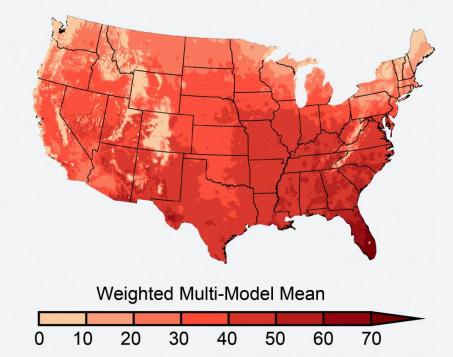
wolfpaving.com

Consequences of *in*action

- Public needs or services diminished
- Projects require upgrades, replacement, higher maintenance or insurance costs
- Decreased rating for state issued bonds

Article


Moody's announces decision to assess climate change risks in evaluating government creditworthiness


Positioning our state

- evolving landscape of federal assistance
 - FEMA Building Resilient Infrastructure & Communities
- indirect effects of a changing climate

Projected Change in Number of Days Above 90°F Mid 21st Century, Higher Scenario (RCP8.5)

Recommendations

- Expect risk & resiliency are the "new normal"
 - w/ new monitoring and baselining
- Require the future be considered
 - with projections or scenarios
 - guard against bond rate downgrading
- Encourage climate resilient design standards
 - allow flexibility in building standards
 - make projects & processes "adaptive"
 - in professional standards

Recommendations

- Make best use of limited resources
 - Use climate in priority-setting
 - Consider non-capital approaches
 - Be competitive for Federal grants and programs
 - Creative ways to increase resources (e.g., "infrastructure bank")
- Learn from other states and regions

Contact

Heidi Roop hroop@umn.edu

CEANS COLLEGE OF FOOD, AGRICULTURAL AND NATURAL RESOURCE SCIENCES

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover^{se}

Jessica Hellmann hellmann@umn.edu

INSTITUTE ON THE ENVIRONMENT

UNIVERSITY OF MINNESOTA Driven to Discover™

UNIVERSITY OF MINNESOTA Driven to Discover®

Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.